Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 29P
(a)
To determine
The wave function
(b)
To determine
The probability density function
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
help with modern physics question
An electron is confined to move in the xy plane in a rectangle whose dimensions are Lx and Ly. That is, the electron is trapped in a two dimensional potential well having lengths of Lx and Ly. In this situation, the allowed energies of the electron depend on two quantum numbers nx and ny and are given by E = h2/8me (nx2/Lx2 + ny2/Ly2)Using this information, we wish to find the wavelength of a photon needed to excite the electron from the ground state to the second excited state, assuming Lx = Ly = L. (a) Using the assumption on the lengths, write an expression for the allowed energies of the electron in terms of the quantumnumbers nx and ny. (b) What values of nx and ny correspond to the ground state? (c) Find the energy of the ground state. (d) What are the possible values of nx and ny for the first excited state, that is, the next-highest state in terms of energy? (e) What are the possible values of nx and ny for thesecond excited state?…
Determine the probability of an electron in the region of x = 0.490L and 0.510L in a box of length L in the energy level n = 1.
Chapter 41 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 41.1 - Prob. 41.1QQCh. 41.2 - Prob. 41.2QQCh. 41.2 - Prob. 41.3QQCh. 41.5 - Prob. 41.4QQCh. 41 - Prob. 1OQCh. 41 - Prob. 2OQCh. 41 - Prob. 3OQCh. 41 - Prob. 4OQCh. 41 - Prob. 5OQCh. 41 - Prob. 6OQ
Ch. 41 - Prob. 7OQCh. 41 - Prob. 8OQCh. 41 - Prob. 9OQCh. 41 - Prob. 10OQCh. 41 - Prob. 1CQCh. 41 - Prob. 2CQCh. 41 - Prob. 3CQCh. 41 - Prob. 4CQCh. 41 - Prob. 5CQCh. 41 - Prob. 6CQCh. 41 - Prob. 7CQCh. 41 - Prob. 8CQCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Two particles with masses m1 and m2 are joined by...Ch. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43APCh. 41 - Prob. 44APCh. 41 - Prob. 45APCh. 41 - Prob. 46APCh. 41 - Prob. 47APCh. 41 - Prob. 48APCh. 41 - Prob. 49APCh. 41 - Prob. 50APCh. 41 - Prob. 51APCh. 41 - Prob. 52APCh. 41 - Prob. 53APCh. 41 - Prob. 54APCh. 41 - Prob. 56APCh. 41 - Prob. 57APCh. 41 - Prob. 58APCh. 41 - Prob. 59CPCh. 41 - Prob. 60CPCh. 41 - Prob. 61CPCh. 41 - Prob. 62CPCh. 41 - Prob. 63CP
Knowledge Booster
Similar questions
- Suppose a wave function is discontinuous at some point. Can this function represent a quantum state of some physical particle? Why? Why not?arrow_forwardA hypothetical one dimensional quantum particle has a normalised wave function given by (x) = ax - iß, where a and 3 are real constants and i = √-1. What is the most likely. x-position, II(x), for the particle to be found at? 0 11(x) == ○ II(2) = 0 ○ II(r) = 2/ O II(z) = 011(r) = ± √ +√ 13 aarrow_forwardThe wave function of an electron confined in a one-dimensional infinite potential well of width L is $₁₂(x)=√ √ √ ²/1₁ sin( -), 2 NTX L where n is a positive integer. If the electron is in the n = 5 state: i) Calculate the probability of finding the electron between x = L and x = L. ii) Calculate the probability of finding the electron in an interval of width 0.04L located at = = }L. xarrow_forward
- A particle of mass m is confined to a 3-dimensional box that has sides Lx,=L Ly=2L, and Lz=3L. a) Determine the sets of quantum numbers n_x, n_y, and n_z that correspond to the lowest 10 energy levels of this box.arrow_forwardFor a particle in a three-dimensional cubical box, what is the degeneracy (number of different quantum states with the same energy) of the energy levels (a) 3p2h2/2mL2 and (b) 9p2h2/2mL2?arrow_forwardA particle is in a box of length L. Suddenly, the length of the box is increased to 2L. What happens to the energy levels as shown? (a) nothing; they are unaffected. (b) They move farther apart. (c) They move closer together.arrow_forward
- For a particle in a three-dimensional box, if the particle is in the (nx, ny, nz)=(4,3,3) state, what is the probability of finding the particle within 0<x<7LX/8 0,y,3Ly/4 LZ/4<z<Lzarrow_forwardFor a "particle in a box" of length, L, the wavelength for the nth level is given by An 2L %3D 2п and the wave function is n(x) = A sin (x) = A sin (x). The energy levels are пп %3D n?h? given by En : %3D 8mL2 lPn(x)|2 is the probability of finding the particle at position x in the box. Since the particle must be somewhere in the box, the integral of this function over the length of the box must be equal to 1. This is the normalization condition and ensuring that this is the case is called “normalizing" the wave function. Find the value of A the amplitude of the wave function, that normalizes it. Write the normalized wave function for the nth state of the particle in a box.arrow_forwardAn electron is trapped in a one-dimensional infinite potential well. For what (a) higher quantum number and (b) lower quantum number is the corresponding energy difference equal to 5 times the energy difference E54 between the levels ng and n4? (c) Can a pair of adjacent levels have an energy difference equal to 2E5 4? (a) Number i (b) Number (c) no Units Units This answer has no units This answer has no unitsarrow_forward
- Quantum Mechanics Consider a particle whose normalized wave function is p(x) = 2avaxe-ax x>0 %3D x <0 a. For what value of x does P(x) = lp(x)l²peak? b. Calculate (x) and (x)2 c. what is the probability that the particle is found between x 0 and x = %3D %3Darrow_forwardConsider a quantum mechanical ideal harmonic oscillator having a zero point energy of 1.4*10^-20J. how much energy could be released if the oscillator makes a transition from n=4 to n=2 states? a)0.69*10^19J b)2.88*10^-20J c)5.76*10^20J d)none are correctarrow_forwardAn electron is trapped in a one-dimensional infinite potential well. For what (a) higher quantum number and (b) lower quantum number is the corresponding energy difference equal to 7 times the energy difference E65 between the levels n6 and n5? (c) Can a pair of adjacent levels have an energy difference equal to 4E65? (a) Number i (b) Number i (c) no < Units Units This answer has no units This answer has no unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning