Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 28P
(a)
To determine
The energy of particle in terms of
(b)
To determine
The value of normalization constant
(c)
To determine
The probability of finding the particle from
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You want to determine the possible energy observable values of a particle in a non-
zero potential described by a wave function. Which of the following equations
represents that process?
ħ²
2m
·V² + V| y = 0
+17] 26
οψ
ħ²
[2²] =0
&= 04
2m
– iħ√y = oy
xy = 06
The wave function for a particle is given by ψ(x) = Aei|x|/a, where A and a are constants. (a) Sketch this function for values of x in the interval -3a < x < 3a. (b) Determine the value of A. (c) Find the probability that the particle will befound in the interval -a < x < a.
V (x) = 00,
V(x) = 0,
x<0,x 2 a
0
Chapter 41 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 41.1 - Prob. 41.1QQCh. 41.2 - Prob. 41.2QQCh. 41.2 - Prob. 41.3QQCh. 41.5 - Prob. 41.4QQCh. 41 - Prob. 1OQCh. 41 - Prob. 2OQCh. 41 - Prob. 3OQCh. 41 - Prob. 4OQCh. 41 - Prob. 5OQCh. 41 - Prob. 6OQ
Ch. 41 - Prob. 7OQCh. 41 - Prob. 8OQCh. 41 - Prob. 9OQCh. 41 - Prob. 10OQCh. 41 - Prob. 1CQCh. 41 - Prob. 2CQCh. 41 - Prob. 3CQCh. 41 - Prob. 4CQCh. 41 - Prob. 5CQCh. 41 - Prob. 6CQCh. 41 - Prob. 7CQCh. 41 - Prob. 8CQCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Two particles with masses m1 and m2 are joined by...Ch. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43APCh. 41 - Prob. 44APCh. 41 - Prob. 45APCh. 41 - Prob. 46APCh. 41 - Prob. 47APCh. 41 - Prob. 48APCh. 41 - Prob. 49APCh. 41 - Prob. 50APCh. 41 - Prob. 51APCh. 41 - Prob. 52APCh. 41 - Prob. 53APCh. 41 - Prob. 54APCh. 41 - Prob. 56APCh. 41 - Prob. 57APCh. 41 - Prob. 58APCh. 41 - Prob. 59CPCh. 41 - Prob. 60CPCh. 41 - Prob. 61CPCh. 41 - Prob. 62CPCh. 41 - Prob. 63CP
Knowledge Booster
Similar questions
- If the ground state energy of a simple harmonic oscillator is 1.25 eV, what is the frequency of its motion?arrow_forwardSuppose a wave function is discontinuous at some point. Can this function represent a quantum state of some physical particle? Why? Why not?arrow_forwardA particle of mass m is confined to a box of width L. If the particle is in the first excited state, what are the probabilities of finding the particle in a region of width0.020 L around the given point x: (a) x=0.25L; (b) x=040L; (c) 0.75L and (d) x=0.90L.arrow_forward
- At time t = 0, a free particle is in a state described by the normalised wave function V(x, 0) where = L A(k) eikz dk, 2π 1/2 a A(k) = (-¹² e-d³²k²/2, and where a is a real positive constant. Estimate the probability that, at time t = 0, the particle's momentum is in the range 1.99h/a ≤ hk ≤ 2.01h/a.arrow_forwardThe wave function for a quantum particle confined to moving in a one-dimensional box located between x = 0 and x = L is ψ(x) = A sin (nπx/L)Use the normalization condition on ψ to show that A = √2/Larrow_forwardA proton and a deuteron (which has the same charge as the proton but 2.0 times the mass) are incident on a barrier of thickness 11.8 fm and “height” 10.9 MeV. Each particle has a kinetic energy of 2.50 MeV. What is the ratio of the tunneling probability of the proton to the tunneling probability of the deuteron?arrow_forward
- Starting with the wave function = ei(kx-wt) obtain the operators for kinetic energy and total energy?arrow_forwardA particle of mass 1.60 x 10-28 kg is confined to a one-dimensional box of length 1.90 x 10-10 m. For n = 1, answer the following. (a) What is the wavelength (in m) of the wave function for the particle? m (b) What is its ground-state energy (in eV)? eV (c) What If? Suppose there is a second box. What would be the length L (in m) for this box if the energy for a particle in the n = 5 state of this box is the same as the ground-state energy found for the first box in part (b)? m (d) What would be the wavelength (in m) of the wave function for the particle in that case? marrow_forwardA quantum particle in an infinitely deep square well has a wave function given by ψ2(x) = √2/L sin (2πx/L)for 0 ≤ x ≤ L and zero otherwise. (a) Determine the expectation value of x. (b) Determine the probability of finding the particle near 1/2 L by calculating the probability that the particle lies in the range 0.490L ≤ x ≤ 0.510L. (c) What If? Determine the probability of finding the particle near 1/4L bycalculating the probability that the particle lies in the range 0.240L ≤ x ≤ 0.260L. (d) Argue that the result of part (a)does not contradict the results of parts (b) and (c).arrow_forward
- An electron has total energy 6.29 eV. The particle initially travels in a region with constant potential energy 0.61 eV, before encountering a step to a new constant potential energy of 4.03 eV. What is the probability (in %) that the electron will be transmitted over the potential step?arrow_forwardWhat type of quantum mechanical problems can be solved using the time-independent Schrödinger equation (TISE)? h^2 dw(x) dx2 + U (x) y (x) = Eµ (x) 2m Any problem where the potential U(x) has no time dependence. O Any quantum mechanical problem can be solved Only problems that have a constant potential U (x) = Uo Any problem where the energy values E are positive O Any problem where the energy values E are negativearrow_forwardAn electron has a wavefunction 4(x) = Ce-lxl/xo where xo is a constant and C=1/√x, for normalization. For this case, obtain expressions for (a) (x) and Ax in terms of xo. (b) Also calculate the probability that the electron will be found within a standard deviation of its average position, that is, in the range (x) - Ax to (x) + Ax, and show that this is independent of xo.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning