Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 19P
(a)
To determine
The expectation value of
(b)
To determine
The probability of finding the particle near
(c)
To determine
The probability of finding the particle near
(c)
To determine
To justify that the result of part (a) does not contradict the results of parts (b) and (c).
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A quantum particle in an infinitely deep square well has a wave function given by ψ2(x) = √2/L sin (2πx/L)for 0 ≤ x ≤ L and zero otherwise. (a) Determine the expectation value of x. (b) Determine the probability of finding the particle near 1/2 L by calculating the probability that the particle lies in the range 0.490L ≤ x ≤ 0.510L. (c) What If? Determine the probability of finding the particle near 1/4L bycalculating the probability that the particle lies in the range 0.240L ≤ x ≤ 0.260L. (d) Argue that the result of part (a)does not contradict the results of parts (b) and (c).
For a quantum particle of mass m in the ground state of a square well with length L and infinitely high walls, the uncertainty in position is Δx ≈ L. (a) Use the uncertainty principle to estimate the uncertainty in its momentum.(b) Because the particle stays inside the box, its average momentum must be zero. Its average squared momentum is then ⟨p2⟩ ≈ (Δp)2. Estimate the energy of the particle. (c) State how the result of part (b) compares with the actual ground-state energy.
2
Chapter 41 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 41.1 - Prob. 41.1QQCh. 41.2 - Prob. 41.2QQCh. 41.2 - Prob. 41.3QQCh. 41.5 - Prob. 41.4QQCh. 41 - Prob. 1OQCh. 41 - Prob. 2OQCh. 41 - Prob. 3OQCh. 41 - Prob. 4OQCh. 41 - Prob. 5OQCh. 41 - Prob. 6OQ
Ch. 41 - Prob. 7OQCh. 41 - Prob. 8OQCh. 41 - Prob. 9OQCh. 41 - Prob. 10OQCh. 41 - Prob. 1CQCh. 41 - Prob. 2CQCh. 41 - Prob. 3CQCh. 41 - Prob. 4CQCh. 41 - Prob. 5CQCh. 41 - Prob. 6CQCh. 41 - Prob. 7CQCh. 41 - Prob. 8CQCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Two particles with masses m1 and m2 are joined by...Ch. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43APCh. 41 - Prob. 44APCh. 41 - Prob. 45APCh. 41 - Prob. 46APCh. 41 - Prob. 47APCh. 41 - Prob. 48APCh. 41 - Prob. 49APCh. 41 - Prob. 50APCh. 41 - Prob. 51APCh. 41 - Prob. 52APCh. 41 - Prob. 53APCh. 41 - Prob. 54APCh. 41 - Prob. 56APCh. 41 - Prob. 57APCh. 41 - Prob. 58APCh. 41 - Prob. 59CPCh. 41 - Prob. 60CPCh. 41 - Prob. 61CPCh. 41 - Prob. 62CPCh. 41 - Prob. 63CP
Knowledge Booster
Similar questions
- Suppose a wave function is discontinuous at some point. Can this function represent a quantum state of some physical particle? Why? Why not?arrow_forwardThe wave function for a quantum particle is a 4(x) π (x² + a²) for a > 0 and -*arrow_forwardA quantum particle in an infinitely deep square well has a wave function that is given by ψ1(x) = √2/Lsin (πx/L)for 0 ≤ x ≤ L and is zero otherwise. (a) Determine the probability of finding the particle between x = 0 and x = 1/3L.(b) Use the result of this calculation and a symmetry argumentto find the probability of finding the particle between x = 1/3 L and x = 2/3 L. Do not re-evaluate the integral.arrow_forward(a) Find the normalization constant A for a wave function made up of the two lowest states of a quantum particle in a box extending from x= 0 to x = L: x) = A sin + 4 sin L. (b) A particle is described in the space -aSxs a by the wave function (x) = A cos + B sin 2a a Determine the relationship between the values of A and B required for normalization.arrow_forwardFor a "particle in a box" of length, L, the wavelength for the nth level is given by An 2L %3D 2п and the wave function is n(x) = A sin (x) = A sin (x). The energy levels are пп %3D n?h? given by En : %3D 8mL2 lPn(x)|2 is the probability of finding the particle at position x in the box. Since the particle must be somewhere in the box, the integral of this function over the length of the box must be equal to 1. This is the normalization condition and ensuring that this is the case is called “normalizing" the wave function. Find the value of A the amplitude of the wave function, that normalizes it. Write the normalized wave function for the nth state of the particle in a box.arrow_forwardFor a quantum particle described by a wave function (x), the expectation value of a physical quantity f(x) associated with the particle is defined by For a particle in an infinitely deep one-dimensional box extending from x = 0 to x = L, show that L 2n°7arrow_forwardWhat is the probability of the particle that in the box with a length of 2 nm is between x = 0.2 and x = 1.0 nm? Ѱ=√(2/L)*sin(nπx/L)arrow_forwardthanks. A quantum particle is described by the wave function ψ(x) = A cos (2πx/L) for −L/4 ≤ x ≤ L/4 and ψ(x) everywhere else. Determine: (a) The normalization constant A, (b) The probability of finding the electron between x = 0 and x = L/8.arrow_forwardFor a particle in a one-dimensional box, calculate the probability of the particle to exists between the length of 0.30L and 0.70L if n = 5.arrow_forwardA wave function has the value A sin x between x= 0 and π but zero elsewhere. Normalize the wave function and find the probability that the particle is (a) between x = 0 and x = π/4 and (b) between x= 0 and π/2.arrow_forwardassume that an electron is moving along the x-axis and that you measure its speed to be 20.5*10^6m/s, which can be known with of precision of 0.50%. what is the minimum uncertainty (as allowed by the uncertainty principle in quantum theory )with which you can simultaneously measure the position of the electron along the x-axis?arrow_forwardThe wave function of a certain particle is y= A cos²x for -t/2 < xarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax