Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 41, Problem 30P
(a)
To determine
The sketch of the wave function for the particle.
(b)
To determine
The wavelength of the wave that penetrates the left-hand wall.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
. An electron in a long organic molecule used in a dye laser behave approximately like a particle in a box with width 4.18 nm.
(a) What is the λ of the proton emitted when the electron undergoes a transition from the first excited level to the ground level.
(b) What is the λ of the proton emitted when electron undergoes a transition from the second excited level to the first excited level?
An electron in an infinite potential well (a box) makes a transition from the n = 3 level to the ground state and, in doing so, emits a photon with a wavelength of 20.9 nm. (a) How wide is this well? (b) What wavelength of the photon would it take to excite the electron from its original level to the next higher level?
An electron is bound in a square well of width 1.05 nm and depth U0=6E∞, where E∞ is the ground-state energy for an infinitely deep potential well.If the electron is initially in the ground level, E1=0.625E∞ , and absorbs a photon, what maximum wavelength can the photon have and still liberate the electron from the well?
Chapter 41 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 41.1 - Prob. 41.1QQCh. 41.2 - Prob. 41.2QQCh. 41.2 - Prob. 41.3QQCh. 41.5 - Prob. 41.4QQCh. 41 - Prob. 1OQCh. 41 - Prob. 2OQCh. 41 - Prob. 3OQCh. 41 - Prob. 4OQCh. 41 - Prob. 5OQCh. 41 - Prob. 6OQ
Ch. 41 - Prob. 7OQCh. 41 - Prob. 8OQCh. 41 - Prob. 9OQCh. 41 - Prob. 10OQCh. 41 - Prob. 1CQCh. 41 - Prob. 2CQCh. 41 - Prob. 3CQCh. 41 - Prob. 4CQCh. 41 - Prob. 5CQCh. 41 - Prob. 6CQCh. 41 - Prob. 7CQCh. 41 - Prob. 8CQCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Two particles with masses m1 and m2 are joined by...Ch. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43APCh. 41 - Prob. 44APCh. 41 - Prob. 45APCh. 41 - Prob. 46APCh. 41 - Prob. 47APCh. 41 - Prob. 48APCh. 41 - Prob. 49APCh. 41 - Prob. 50APCh. 41 - Prob. 51APCh. 41 - Prob. 52APCh. 41 - Prob. 53APCh. 41 - Prob. 54APCh. 41 - Prob. 56APCh. 41 - Prob. 57APCh. 41 - Prob. 58APCh. 41 - Prob. 59CPCh. 41 - Prob. 60CPCh. 41 - Prob. 61CPCh. 41 - Prob. 62CPCh. 41 - Prob. 63CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electron is trapped in an infinitely deep one- dimensional well of width 0.285 nm. Initially, the electron occupies the n = 4 state. (a) Suppose the electron jumps to the ground state with the accompanying emission of a photon. What is the energy of the photon? (b) Find the energies of other photons that might be emitted if the electron takes other paths between the n = 4 state and the ground state.arrow_forwardA particle of mass 1.60 x 10-28 kg is confined to a one-dimensional box of length 1.90 x 10-10 m. For n = 1, answer the following. (a) What is the wavelength (in m) of the wave function for the particle? m (b) What is its ground-state energy (in eV)? eV (c) What If? Suppose there is a second box. What would be the length L (in m) for this box if the energy for a particle in the n = 5 state of this box is the same as the ground-state energy found for the first box in part (b)? m (d) What would be the wavelength (in m) of the wave function for the particle in that case? marrow_forwardAn electron trapped in a one-dimensional infinitely deep potential well with a width of 250 pm is excited from the first excited state to the third excited state. What energy must the electron acquire for this quantum jump to occur? The electron then emits a photon and transitions to the ground state. Determine the wavelength and momentum of the emitted photon.arrow_forward
- An electron was inserted into a quantum well that was L (nm) long to determine the behavior and location of the electron. Suppose that the wall of a quantum well has a finite V0 photoentral. At this time, perfectly guide the mathematical expression of the state function psi and the probability density function of the electron. And how can we explain the behavior of the former in this case?arrow_forwardA particle of mass m is moving in an infinite 1D quantum well of width L. y,(x) = J? sinx. sin nAx L (a) How much energy must be given to the particle so it can transition from the ground state to the second excited state? (b) If the particle is in the first excited state, what is the probability of finding the particle between x = and x = ;? 2.arrow_forwardAn electron is trapped in a one-dimensional infinite potential well that is 170 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width ôx = 5.0 pm centered at x = 81 pm? (Hint: The interval ôx is so narrow that you can take the probability density to be constant within it.) %3D Number Units T h ルarrow_forward
- If the particle in the box in the second excited state(i.e. n=3), what is the probability P that it is between x=L/2 and x=L/3 ?arrow_forwardConsider an electron in a one-dimensional box of length L= 6 Å. The wavefunction for the particle is given as follows: Pn(x) = where n is the quantum number. Sketch the 2 and |Þ2|². Calculate the probability of finding electron in the first half of the box at n=2 level.arrow_forwardAn electron is trapped in a one-dimensional infinite potential well. For what (a) higher quantum number and (b) lower quantum number is the corresponding energy difference equal to the energy of the ng level? (c) Can a pair of adjacent levels have an energy difference equal to the energy of the n₂? (a) Number (b) Number i (c) Units Unitsarrow_forward
- An electron is confined to a narrow evacuated tube of length 3.0 m; the tube functions as a one-dimensional infinite potential well. (a) What is the energy difference between the electron’s ground state and its first excited state? (b) At what quantum number n would the energy difference between adjacent energy levels be 1.0 eV—which is measurable, unlike the result of (a)? At that quantum number, (c) what multiple of the electron’s rest energy would give the electron’s total energy and (d) would the electron be relativistic?arrow_forwardAn electron is trapped in a one-dimensional infinite potential well that is 200 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width öx = 5.0 pm centered at x = 100 pm? (Hint: The interval öx is so narrow that you can take the probability density to be constant within it.) Number i Unitsarrow_forwardAn electron is bound in a square well that has a depth equal to six times the ground-level energy E1-IDW of an infinite well of the same width. The longest-wavelength photon that is absorbed by this electron has a wavelength of 582 nm. Determine the width of the well.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax