Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 21P
(a)
To determine
The probability of finding an electron in ground state within
(b)
To determine
The classical probability of finding an electron in the same interval and comapres it with answer in part (a).
(c)
To determine
Probability in the same interval above using methods in both part (a) and (b) for 99th state.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
We can approximate an electron moving in a nanowire (a small, thin wire) as a one-dimensional infi nite square-well potential. Let the wire be 2.0 μm long. The nanowire is cooled to a temperature of 13 K, and we assume the electron’s average kinetic energy is that of gas molecules at this temperature ( 3kT/2). (a) What are the three lowest possible energy levels of the electrons? (b) What is the approximate quantum number of electrons moving in the wire?
A particle is in a three-dimensional box. The y length of the box is twice the x length, and the z length is one-third of the y length.
(a) What is the energy difference between the first excited level and the ground level?
(b) Is the first excited level degenerate?
(c) In terms of the x length, where is the probability distribution the greatest in the lowest-energy level?
In a simple model for a radioactive nucleus, an alpha particle (m = 6.64 * 10-27 kg) is trapped by a square barrier that has width 2.0 fm and height 30.0 MeV.
(a) What is the tunneling probability when the alpha particle encounters the barrier if its kinetic energy is 1.0 MeV below the top of the barrier (Fig. )?
(b) What is the tunneling probability if the energy of the alpha particle is 10.0 MeV below the top of the barrier?
Chapter 41 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 41.1 - Prob. 41.1QQCh. 41.2 - Prob. 41.2QQCh. 41.2 - Prob. 41.3QQCh. 41.5 - Prob. 41.4QQCh. 41 - Prob. 1OQCh. 41 - Prob. 2OQCh. 41 - Prob. 3OQCh. 41 - Prob. 4OQCh. 41 - Prob. 5OQCh. 41 - Prob. 6OQ
Ch. 41 - Prob. 7OQCh. 41 - Prob. 8OQCh. 41 - Prob. 9OQCh. 41 - Prob. 10OQCh. 41 - Prob. 1CQCh. 41 - Prob. 2CQCh. 41 - Prob. 3CQCh. 41 - Prob. 4CQCh. 41 - Prob. 5CQCh. 41 - Prob. 6CQCh. 41 - Prob. 7CQCh. 41 - Prob. 8CQCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Two particles with masses m1 and m2 are joined by...Ch. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43APCh. 41 - Prob. 44APCh. 41 - Prob. 45APCh. 41 - Prob. 46APCh. 41 - Prob. 47APCh. 41 - Prob. 48APCh. 41 - Prob. 49APCh. 41 - Prob. 50APCh. 41 - Prob. 51APCh. 41 - Prob. 52APCh. 41 - Prob. 53APCh. 41 - Prob. 54APCh. 41 - Prob. 56APCh. 41 - Prob. 57APCh. 41 - Prob. 58APCh. 41 - Prob. 59CPCh. 41 - Prob. 60CPCh. 41 - Prob. 61CPCh. 41 - Prob. 62CPCh. 41 - Prob. 63CP
Knowledge Booster
Similar questions
- An electron is limited to a linear molecule 1.0 nm long. (a) Calculate (i) h minimum electron energy and (ii) the minimum excitation energy from the fundamental condition. (b) What is the probability of finding the electron in the region between x = 0 and x = 0.2 nm, when it is in the ground state?arrow_forwardAn electron is trapped in a one-dimensional infinite potential well that is 430 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width &x = 5.0 pm centered at x = 260 pm? (Hint: The interval Sx is so narrow that you can take the probability density to be constant within it.) Number i Unitsarrow_forwardA one-dimensional infinite well of length 200 pm contains an electron in its third excited state.We position an electrondetector probe of width 2.00 pm so that it is centered on a point of maximum probability density. (a) What is the probability of detection by the probe? (b) If we insert the probe as described 1000 times, how many times should we expect the electron to materialize on the end of the probe (and thus be detected)?arrow_forward
- An electron is trapped in a one-dimensional infinite potential well that is 460 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width δx = 5.0 pm centered at x = 300 pm? (Hint: The interval δx is so narrow that you can take the probability density to be constant within it.)arrow_forwardAn electron is trapped in a one-dimensional infinite potential well that is 100 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width x = 5.0 pm centered at x = (a) 25 pm, (b) 50 pm, and (c) 90 pm? (Hint: The interval x is so narrow that you can take the probability density to be constant within it.)arrow_forwardProve that assuming n = 0 for a quantum particle in an infinitely deep potential well leads to a violation of the uncertainty principle Δpx Δx ≥ h/2.arrow_forward
- Consider a model thermodynamic assembly in which the allowed one-particle states have energies 0, ?, 2?, 3?, 4?,5?,6?,.... The assembly has three particles and a total energy of 7?. Identify the possible particle number distributions and calculate the average distribution of the three particles in the energy states when the particles are (a) localized and distinguishable (b) gaseous bosons (c) gaseous fermionsarrow_forwardAn electron is confined to a one-dimensional infinite well 0.1 nm. wide. (a) Determine the deBroglie wavelength of the electron in the ground state. (b) What is the electron’s minimum kinetic energy? (c) What is the energy of the first excited state? (d) What energy is required to excite the electron from the ground state to the first excited state? (e) What wavelength photon would be emitted if the system were to de-excite from the first excited state to the ground state.arrow_forward∆E ∆t ≥ ħTime is a parameter, not an observable. ∆t is some timescale over which the expectation value of an operator changes. For example, an electron's angular momentum in a hydrogen atom decays from 2p to 1s. These decays are relativistic, however the uncertainty principle is still valid, and we can use it to estimate uncertainties. ∆E doesn't change in time, so when an excited state decays to the ground state (infinite lifetime, so no energy uncertainty), the energy uncertainty has to go somewhere. Usually, it’s in the frequency of a photon giving a width (through E = hν) to the transition line in an spectroscopy experiment. The linewidth of the 2p state in 9Be+ is 19.4 MHz. What is its lifetime? (Note: in the relativistic atom–photon system, the Hamiltonian is independent of time and both energy and its uncertainty are conserved.)arrow_forward
- ∆E ∆t ≥ ħTime is a parameter, not an observable. ∆t is some timescale over which the expectation value of an operator changes. For example, an electron's angular momentum in a hydrogen atom decays from 2p to 1s. These decays are relativistic, however the uncertainty principle is still valid, and we can use it to estimate uncertainties. When heavy particles are made in colliders, they typically decay, which gives a linewidth to their measured mass via the uncertainty in energy. The ∆ particle lives very briefly (often called resonances instead of particles), and its lifetime is 5.58 x 10-24 s. Its mass is 1.232 GeV/c2. Predict the width of its energy resonance in MeV.arrow_forwardThe ground state wave function for the quantum mechanical simple harmonic oscillator is of the form, y(x)= A,e-** mo, a = where A, is the normalization factor and a is a constant that depends on the mass and classical frequency of the oscillator. Find the normalization factor in terms of the mass and classical frequency w, The following definite integral should be helpful: 1 2aarrow_forwardTwo nanowires are separated by 1.3 nm as measured by STM. Inside the wires the potential energy is zero, but between the wires the potential energy is greater than the electron’s energy by only 0.9 eV. Estimate the probability that the electron passes from one wire to the other.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning