Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 66P
Water flows steadily through the nozzle shown, discharging to atmosphere. Calculate the horizontal component of force in the flanged joint. Indicate whether the joint is in tension or compression.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 60 degrees bend occurs in a water pipeline that reduces from 600 mm diameter to 300 mm diameter at the bend (inside bend angle 120 degrees). If the gauge pressure at the inlet is 172 kPa, determine the magnitude and angle of the thrust on the bend when the flow is 0.85 m3 /s. Hint: start by calculating the initial and final velocities, then the final pressure. Next, analyse the pressure and momentum forces in the x and y planes.
A 60° bend occurs in a water pipeline that reduces from 600 mm diameter to 300 mm diameter at the bend (inside bend angle 120). If the gauge pressure at the inlet is
172 KPa, determine the magnitude ad angle of the thrust on the bend when the flow is 0.85 m3/s. Hint: start by calculating the initial and final velocities, then the final
pressure. Next, analyze the pressure and momentum forces in the x and y planes.
Consider the bend shown in . The total mass of the bend and the
water within it is 20 kg, with a mass center at point G. The
pressure of the water at A is 50 kPa Assume that no force is
transferred to the flanges at A and B. Suppose the velocity
through the pipe to be 4.5 m/s.
100 mm
By
60
100 mm
600 mm
150 mm-
100 mm
D
Part A
Determine the horizontal component of force exerted on the fixed support D.
Express your answer to three significant figures and include the appropriate units.
Chapter 4 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 4 - An ice-cube tray containing 250 mL of freshwater...Ch. 4 - A hot air balloon with an initial volume of 2600...Ch. 4 - A fully loaded Boeing 777-200 jet transport...Ch. 4 - On the Milford Trek in New Zealand, there is a...Ch. 4 - A high school experiment consists of a block of...Ch. 4 - For a small particle of styrofoam (density = 19.2...Ch. 4 - Air at 20C and an absolute pressure of 101.3 kpa...Ch. 4 - A block of copper of mass 5 kg is heated to 90C...Ch. 4 - The average rate of heat loss from a person to the...Ch. 4 - The velocity field in the region shown is given by...
Ch. 4 - The area shown shaded is in a flow where the...Ch. 4 - Obtain an expression for the kinetic energy flux,...Ch. 4 - A 0.3 m by 0.5 m rectangular air duct carries a...Ch. 4 - Across a shock wave in a gas flow there is a great...Ch. 4 - Water flows in a pipeline composed of 75-mm and...Ch. 4 - The velocity distribution for laminar flow in a...Ch. 4 - A farmer is spraying a liquid through 10 nozzles,...Ch. 4 - A university laboratory that generates 15 m3/s of...Ch. 4 - Hydrogen is being pumped through a pipe system...Ch. 4 - Calculate the mean velocities for these...Ch. 4 - If the velocity profile in a passage of width 2R...Ch. 4 - Fluid with 1040 kg/m3 density is flowing steadily...Ch. 4 - A rice farmer needs to fill a 150 m 400 m field...Ch. 4 - In your kitchen, the sink is 60 cm by 45.7 cm. by...Ch. 4 - Fluid passes through this set of thin closely...Ch. 4 - A pipeline 0.3 m in diameter divides at a Y into...Ch. 4 - A manifold pipe of 3 in. diameter has four...Ch. 4 - You are trying to pump storm water out of your...Ch. 4 - In the incompressible flow through the device...Ch. 4 - Water enters a wide, flat channel of height 2h...Ch. 4 - Find the average efflux velocity V if the flow...Ch. 4 - Find V for this mushroom cap on a pipeline. P4.32Ch. 4 - Incompressible fluid flows steadily through a...Ch. 4 - A two-dimensional reducing bend has a linear...Ch. 4 - Water enters a two-dimensional, square channel of...Ch. 4 - Viscous liquid from a circular tank. D = 300 mm in...Ch. 4 - A rectangular tank used to supply water for a...Ch. 4 - A cylindrical tank, 0.3 m in diameter, drains...Ch. 4 - Air enters a tank through an area of 0.018 m2 with...Ch. 4 - A cylindrical tank, of diameter D = 50 mm, drains...Ch. 4 - A conical flask contains water to height H = 36.8...Ch. 4 - Water flows steadily past a porous flat plate....Ch. 4 - A tank of fixed volume contains brine with initial...Ch. 4 - A conical funnel of half-angle = 30 drains...Ch. 4 - Evaluate the net rate of flux of momentum out...Ch. 4 - Water flows steadily through a pipe of length L...Ch. 4 - Evaluate the net momentum flux through the bend of...Ch. 4 - Evaluate the net momentum flux through the channel...Ch. 4 - A conical enlargement in a vertical pipeline is 5...Ch. 4 - A 100-mm nozzle is bolted (with 6 bolts) to the...Ch. 4 - The projectile partially fills the end of the 0.3...Ch. 4 - Considering that in the fully developed region of...Ch. 4 - A jet of water issuing from a stationary nozzle at...Ch. 4 - A circular cylinder inserted across a stream of...Ch. 4 - A 6-in.-diameter horizontal pipeline bends through...Ch. 4 - The axes of the pipes are in a vertical plane. The...Ch. 4 - Water flows through a tee in a horizontal pipe...Ch. 4 - In a laboratory experiment, the water flow rate is...Ch. 4 - A gate is 1 m wide and 1.2 m tall and hinged at...Ch. 4 - Water flows steadily through a fire hose and...Ch. 4 - Two types of gasoline are blended by passing them...Ch. 4 - A circular cylinder inserted across a stream of...Ch. 4 - The pressure difference results from head loss...Ch. 4 - Obtain expressions for the rate of change in mass...Ch. 4 - Water is flowing steadily through the 180 elbow...Ch. 4 - Water flows steadily through the nozzle shown,...Ch. 4 - The pump, suction pipe, discharge pipe, and nozzle...Ch. 4 - The passage is 1.2 m wide normal to the paper....Ch. 4 - If the two-dimensional flow rate through this...Ch. 4 - Assume the bend of Problem 4.35 is a segment of a...Ch. 4 - A flat plate orifice of 50 mm diameter is located...Ch. 4 - At rated thrust, a liquid-fueled rocket motor...Ch. 4 - Flow from the end of a two-dimensional open...Ch. 4 - Calculate the magnitude and direction of the...Ch. 4 - This water jet of 50 mm diameter moving at 30 m/s...Ch. 4 - If the splitter is removed from the plate of...Ch. 4 - Consider flow through the sudden expansion shown....Ch. 4 - A conical spray head is shown. The fluid is water...Ch. 4 - A curved nozzle assembly that discharges to the...Ch. 4 - The pump maintains a pressure of 10 psi at the...Ch. 4 - A motorboat moves up a river at a speed of 9 m/s...Ch. 4 - A 30 reducing elbow is shown. The fluid is water....Ch. 4 - A monotube boiler consists of a 6 m length of...Ch. 4 - Water is discharged at a flow rate of 0.3m3/s from...Ch. 4 - A nozzle for a spray system is designed to produce...Ch. 4 - The horizontal velocity in the wake behind an...Ch. 4 - An incompressible fluid flows steadily in the...Ch. 4 - Consider the incompressible flow of fluid in a...Ch. 4 - Air at standard conditions flows along a flat...Ch. 4 - Gases leaving the propulsion nozzle of a rocket...Ch. 4 - Two large tanks containing water have small...Ch. 4 - Students are playing around with a water hose....Ch. 4 - A 2-kg disk is constrained horizontally but is...Ch. 4 - A stream of water from a 50-mm-diameter nozzle...Ch. 4 - A plane nozzle discharges vertically 1200 L/s per...Ch. 4 - In ancient Egypt, circular vessels filled with...Ch. 4 - Incompressible fluid of negligible viscosity is...Ch. 4 - The narrow gap between two closely spaced circular...Ch. 4 - Design a clepsydra (Egyptian water clock), which...Ch. 4 - Water from a stationary nozzle impinges on a...Ch. 4 - A freshwater jet boat takes in water through side...Ch. 4 - The Canadair CL-215T amphibious aircraft is...Ch. 4 - Water, in a 100-mm-diameter jet with speed of 30...Ch. 4 - Consider a series of turning vanes struck by a...Ch. 4 - A steady jet of water is used to propel a small...Ch. 4 - The cart of Problem 4.105 is accelerated by a jet...Ch. 4 - A vane/slider assembly moves under the influence...Ch. 4 - A cart is propelled by a liquid jet issuing...Ch. 4 - For the vane/slider problem of Problem 4.107, find...Ch. 4 - If the cart of Problem 4.105 is released at t = 0,...Ch. 4 - The wheeled cart shown rolls with negligible...Ch. 4 - A rocket sled is to be slowed from an initial...Ch. 4 - Starting from rest, the cart shown is propelled by...Ch. 4 - Solve Problem 4.107 if the vane and slider ride on...Ch. 4 - For the vane/slider problem of Problem 4.114, plot...Ch. 4 - A rectangular block of mass M, with vertical...Ch. 4 - A vertical jet of water impinges on a horizontal...Ch. 4 - A rocket sled traveling on a horizontal track is...Ch. 4 - A rocket sled accelerates from rest on a level...Ch. 4 - A rocket sled with initial mass of 900 kg is to be...Ch. 4 - A rocket sled with initial mass of 3 metric tons,...Ch. 4 - A home-made solid propellant rocket has an initial...Ch. 4 - Neglecting air resistance, what speed would a...Ch. 4 - The moving tank shown is to be slowed by lowering...Ch. 4 - The 90 reducing elbow of Example 4.6 discharges to...Ch. 4 - Crude oil (SG = 0:95) from a tanker dock flows...Ch. 4 - The simplified lawn sprinkler shown rotates in the...Ch. 4 - Calculate the torque about the pipes centerline in...Ch. 4 - A fire truck is equipped with a 66 ft long...Ch. 4 - Calculate the torque exerted on the flange joint...Ch. 4 - Consider the sprinkler of Problem 4.130 again....Ch. 4 - A small lawn sprinkler is shown. The sprinkler...Ch. 4 - When a garden hose is used to fill a bucket, water...Ch. 4 - A pipe branches symmetrically into two legs of...Ch. 4 - Compressed air is stored in a pressure bottle with...Ch. 4 - A turbine is supplied with 0.6 m3/s of water from...Ch. 4 - Air is drawn from the atmosphere into a...Ch. 4 - At high speeds the compressor and turbine of the...Ch. 4 - Transverse thrusters are used to make large ships...Ch. 4 - All major harbors are equipped with fire boats for...Ch. 4 - A pump draws water from a reservoir through a...Ch. 4 - Liquid flowing at high speed in a wide, horizontal...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What is the difference between floating-point division and integer division?
Starting Out with Python (4th Edition)
What is the major problem with the redesigned cap screw? What should the drill diameter be? How could it be mad...
Degarmo's Materials And Processes In Manufacturing
For the circuit shown, use the node-voltage method to find v1, v2, and i1.
How much power is delivered to the c...
Electric Circuits. (11th Edition)
Declare method sphereVolume to calculate and return the volume of the sphere. Use the following statement to ca...
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
ICA 8-28
If the pressure is 250 feet of water [ft H2O], what is the pressure in inches of mercury [in Hg]?
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Lottery Statistics To play the PowerBall lottery, you buy a ticket that has five numbers in the range of 1-69, ...
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A tank is connected with cart by the rope A as shown in figure. When the water leaves the tank from the nozzle, it falls and strikes a vane attached to another cart. Neglect the friction effect. i. Compute the velocity of water leaving the tank V1 and water velocity leaving the cart V2. ii. Deterime the tensions in the rope A and the rope B. Nozzle area = 0.01 m? 2 m Horizontal free jets 4 m Rope A Rope Barrow_forwardSolve the following problems. 1. A pipe bends through an angle of 90° in the vertical plane. At the inlet it has a cross- sectional area of 0.003 m and a gauge pressure of 500 KPa. At exit it has an area of 0.001 m2 and a gauge pressure of 200 KPa. Calculate the vertical and horizontal forces due to the pressure only. 2. Calculate the momentum force on a 180° bend that carries 5 kg/s of water. The pipe is 500 mm bore diameter throughout. The density is 1000 kg/m2.arrow_forwardplzzzzz help me i neeed the answerarrow_forward
- The water (density-1000 kg/m3) leaves the nozzle (area of the nozzle-0.01 m) Assuming steady, incompressible, and neglect the weight of jet and the plate, change in elevation is also neglected. Determine the horizontal reaction force (N) on the support Note that the stagnation tube has a fluid of specific gravity S 61 and the deflection of the fluid in stagnation tube is 50 cm. stagnation tube angle-40 deg Nozzle 50 cm angle =20 degarrow_forwardDon't copy any wrong solution, Answer must correct. Show your work within 30minutes.arrow_forwardA nozzle that discharges a 60-mm-diameter water jet into the air is on the right end of a horizontal 120-mm- diameter pipe. In the line, the water has a velocity of 4 m/s and a gage pressure of 400 kPa. Find the magnitude and direction of the resultant axial force the water exerts on the nozzle and the head loss in the nozzle.arrow_forward
- (3) The cart shown below is restrained from moving by a cable connected to a fixed wall. The tank has a circular cross section of diameter D and the flow exit has a circular cross section of diameter Do. Do not assume that H(t) is constant. The fluid has density p and the exit is open to the atmosphere. Wall H D- Do Cable Vo (1) Determine H(t) and the exit velocity Vo(t). (2) Determine the tension in the cable as a function of time Your answers should be in terms of given parameters (D, Do, p, g) о,arrow_forwardAn elbow deflects water upward and discharges it to the atmosphere at a specific rate. Determine the gage pressure at the inlet of the elbow and the anchoring force needed to hold the elbow in place. (gage pressure at the outlet is zero)arrow_forwardThe military jet aircraft has a gross weight of 28,000 lb and is poised for takeoff with brakes set while the engine is revved up to maximum power. At this condition, air with a specific weight of 0.0753 lb/ft is sucked into the intake ducts at the rate of 112 Ib/sec with a static pressure of -0.28 Ib/in.? (gage) across the duct entrance. The total cross-sectional area of both intake ducts (one on each side) is 1630 in.? The air-fuel ratio is 16.2, and the exhaust velocity u is 2630 ft/sec with zero back pressure (gage) across the exhaust nozzle. Compute the initial acceleration a of the aircraft upon release of the brakes. Answer: a = ft/sec2arrow_forward
- 1a. Water flows into a tee fitting at a flow rate of 0.02 m3 /s. A pipe is connected to B. The pressure at B is 70 kPa. Find the pressure forces at B and C then determine the horizontal and vertical forces needed at the fixed support A, along with the moment required at A to hold the pipe in equilibrium. Neglect the resistance provided by the pipes at B and C, as well as the weights of the pipe and water. (view image for this problem) 1b.Glycerin (ρ=1260 kg/m3 and µ=1.5 N.s/m2 ) flows through a 250-mm diameter, horizontal smooth pipe with an average velocity of 4 m/s. Determine the pressure drop in a 20 m long segment of the pipe.arrow_forwardThe water (density =1000 kg/m3) leaves the nozzle (area of the nozzle=0.01 m). Assuming steady, incompressible, and neglect the weight of jet and the plate, change in elevation is also neglected. Determine the horizontal reaction force (N) on the support. Note that the stagnation tube has a fluid of specific gravity S=8.9 and the deflection of the fluid in stagnation tube is 50 cm. stagnation tube angle=40 deg Nozzle 50 cm angle =20 degarrow_forwardA rectangular flap with length K (normal to the sketch), which can rotate around axis A, closes the outflow of a liquid from the tank. Determine the force F of the flap action on the vertical wall of the container. Given: H = 1.5 m L= 0.5 m K = 0.7 m a = 30° p= 1000 kg/m Find: F H A Larrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY