Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 35P
Water enters a two-dimensional, square channel of constant width, h = 75.5 mm, with uniform velocity, U. The channel makes a 90° bend that distorts the flow to produce the linear velocity profile shown at the exit, with Vmax = 2 Vmin. Evaluate Vmin, if U = 7.5 m/s.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Water flows through a rectangular duct of height h = 575.5 mm and width b = 100 mm.(coming off screen) and enters a 90° elbow. At the entrance of the elbow, flow can be considereduniform with speed U = 58 m/s. At the output, a linear velocity profile must be consideredas shown in the figure, where Vmax = 2Vmin. Calculate the value of Vmin in m/s.
A two-dimensional reducing bend has a
linear velocity profile at section (1).
The flow is uniform at sections (2) and
(3). The depth of the bend
perpendicular to the plane of the paper
is 1 ft. Consider steady incompressible
flow. Calculate the discharge at section
(1). Also calculate the magnitude and h₁ = 2 ft
direction of the uniform velocity at
section (3). Hint: the cross-sectional
areas are rectangular
VA
V₁,
max
10 ft/s
h3 = 1.5 ft-
V2 = 15 ft/s
- h₂ = 1 ft
0 = 60°
The figure shows a channel with width of 2.4 m. The density of the water is 1000 kg/m^3. The flow is steady. At the entrance of the channel, the flow is uniform with
velocity V (m/s) while at the exit, the flow has developed the shown velocity profile u(y) = 4y-2y^2 (m/s) and y is in (m). Answer the following questions.
The area in (m^2) of the entrance is:
V
0.75
u = 4y – 2y?
The area in m^2 at the exit section is:
The average velocity in (m/s) at the exit section is:
Chapter 4 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 4 - An ice-cube tray containing 250 mL of freshwater...Ch. 4 - A hot air balloon with an initial volume of 2600...Ch. 4 - A fully loaded Boeing 777-200 jet transport...Ch. 4 - On the Milford Trek in New Zealand, there is a...Ch. 4 - A high school experiment consists of a block of...Ch. 4 - For a small particle of styrofoam (density = 19.2...Ch. 4 - Air at 20C and an absolute pressure of 101.3 kpa...Ch. 4 - A block of copper of mass 5 kg is heated to 90C...Ch. 4 - The average rate of heat loss from a person to the...Ch. 4 - The velocity field in the region shown is given by...
Ch. 4 - The area shown shaded is in a flow where the...Ch. 4 - Obtain an expression for the kinetic energy flux,...Ch. 4 - A 0.3 m by 0.5 m rectangular air duct carries a...Ch. 4 - Across a shock wave in a gas flow there is a great...Ch. 4 - Water flows in a pipeline composed of 75-mm and...Ch. 4 - The velocity distribution for laminar flow in a...Ch. 4 - A farmer is spraying a liquid through 10 nozzles,...Ch. 4 - A university laboratory that generates 15 m3/s of...Ch. 4 - Hydrogen is being pumped through a pipe system...Ch. 4 - Calculate the mean velocities for these...Ch. 4 - If the velocity profile in a passage of width 2R...Ch. 4 - Fluid with 1040 kg/m3 density is flowing steadily...Ch. 4 - A rice farmer needs to fill a 150 m 400 m field...Ch. 4 - In your kitchen, the sink is 60 cm by 45.7 cm. by...Ch. 4 - Fluid passes through this set of thin closely...Ch. 4 - A pipeline 0.3 m in diameter divides at a Y into...Ch. 4 - A manifold pipe of 3 in. diameter has four...Ch. 4 - You are trying to pump storm water out of your...Ch. 4 - In the incompressible flow through the device...Ch. 4 - Water enters a wide, flat channel of height 2h...Ch. 4 - Find the average efflux velocity V if the flow...Ch. 4 - Find V for this mushroom cap on a pipeline. P4.32Ch. 4 - Incompressible fluid flows steadily through a...Ch. 4 - A two-dimensional reducing bend has a linear...Ch. 4 - Water enters a two-dimensional, square channel of...Ch. 4 - Viscous liquid from a circular tank. D = 300 mm in...Ch. 4 - A rectangular tank used to supply water for a...Ch. 4 - A cylindrical tank, 0.3 m in diameter, drains...Ch. 4 - Air enters a tank through an area of 0.018 m2 with...Ch. 4 - A cylindrical tank, of diameter D = 50 mm, drains...Ch. 4 - A conical flask contains water to height H = 36.8...Ch. 4 - Water flows steadily past a porous flat plate....Ch. 4 - A tank of fixed volume contains brine with initial...Ch. 4 - A conical funnel of half-angle = 30 drains...Ch. 4 - Evaluate the net rate of flux of momentum out...Ch. 4 - Water flows steadily through a pipe of length L...Ch. 4 - Evaluate the net momentum flux through the bend of...Ch. 4 - Evaluate the net momentum flux through the channel...Ch. 4 - A conical enlargement in a vertical pipeline is 5...Ch. 4 - A 100-mm nozzle is bolted (with 6 bolts) to the...Ch. 4 - The projectile partially fills the end of the 0.3...Ch. 4 - Considering that in the fully developed region of...Ch. 4 - A jet of water issuing from a stationary nozzle at...Ch. 4 - A circular cylinder inserted across a stream of...Ch. 4 - A 6-in.-diameter horizontal pipeline bends through...Ch. 4 - The axes of the pipes are in a vertical plane. The...Ch. 4 - Water flows through a tee in a horizontal pipe...Ch. 4 - In a laboratory experiment, the water flow rate is...Ch. 4 - A gate is 1 m wide and 1.2 m tall and hinged at...Ch. 4 - Water flows steadily through a fire hose and...Ch. 4 - Two types of gasoline are blended by passing them...Ch. 4 - A circular cylinder inserted across a stream of...Ch. 4 - The pressure difference results from head loss...Ch. 4 - Obtain expressions for the rate of change in mass...Ch. 4 - Water is flowing steadily through the 180 elbow...Ch. 4 - Water flows steadily through the nozzle shown,...Ch. 4 - The pump, suction pipe, discharge pipe, and nozzle...Ch. 4 - The passage is 1.2 m wide normal to the paper....Ch. 4 - If the two-dimensional flow rate through this...Ch. 4 - Assume the bend of Problem 4.35 is a segment of a...Ch. 4 - A flat plate orifice of 50 mm diameter is located...Ch. 4 - At rated thrust, a liquid-fueled rocket motor...Ch. 4 - Flow from the end of a two-dimensional open...Ch. 4 - Calculate the magnitude and direction of the...Ch. 4 - This water jet of 50 mm diameter moving at 30 m/s...Ch. 4 - If the splitter is removed from the plate of...Ch. 4 - Consider flow through the sudden expansion shown....Ch. 4 - A conical spray head is shown. The fluid is water...Ch. 4 - A curved nozzle assembly that discharges to the...Ch. 4 - The pump maintains a pressure of 10 psi at the...Ch. 4 - A motorboat moves up a river at a speed of 9 m/s...Ch. 4 - A 30 reducing elbow is shown. The fluid is water....Ch. 4 - A monotube boiler consists of a 6 m length of...Ch. 4 - Water is discharged at a flow rate of 0.3m3/s from...Ch. 4 - A nozzle for a spray system is designed to produce...Ch. 4 - The horizontal velocity in the wake behind an...Ch. 4 - An incompressible fluid flows steadily in the...Ch. 4 - Consider the incompressible flow of fluid in a...Ch. 4 - Air at standard conditions flows along a flat...Ch. 4 - Gases leaving the propulsion nozzle of a rocket...Ch. 4 - Two large tanks containing water have small...Ch. 4 - Students are playing around with a water hose....Ch. 4 - A 2-kg disk is constrained horizontally but is...Ch. 4 - A stream of water from a 50-mm-diameter nozzle...Ch. 4 - A plane nozzle discharges vertically 1200 L/s per...Ch. 4 - In ancient Egypt, circular vessels filled with...Ch. 4 - Incompressible fluid of negligible viscosity is...Ch. 4 - The narrow gap between two closely spaced circular...Ch. 4 - Design a clepsydra (Egyptian water clock), which...Ch. 4 - Water from a stationary nozzle impinges on a...Ch. 4 - A freshwater jet boat takes in water through side...Ch. 4 - The Canadair CL-215T amphibious aircraft is...Ch. 4 - Water, in a 100-mm-diameter jet with speed of 30...Ch. 4 - Consider a series of turning vanes struck by a...Ch. 4 - A steady jet of water is used to propel a small...Ch. 4 - The cart of Problem 4.105 is accelerated by a jet...Ch. 4 - A vane/slider assembly moves under the influence...Ch. 4 - A cart is propelled by a liquid jet issuing...Ch. 4 - For the vane/slider problem of Problem 4.107, find...Ch. 4 - If the cart of Problem 4.105 is released at t = 0,...Ch. 4 - The wheeled cart shown rolls with negligible...Ch. 4 - A rocket sled is to be slowed from an initial...Ch. 4 - Starting from rest, the cart shown is propelled by...Ch. 4 - Solve Problem 4.107 if the vane and slider ride on...Ch. 4 - For the vane/slider problem of Problem 4.114, plot...Ch. 4 - A rectangular block of mass M, with vertical...Ch. 4 - A vertical jet of water impinges on a horizontal...Ch. 4 - A rocket sled traveling on a horizontal track is...Ch. 4 - A rocket sled accelerates from rest on a level...Ch. 4 - A rocket sled with initial mass of 900 kg is to be...Ch. 4 - A rocket sled with initial mass of 3 metric tons,...Ch. 4 - A home-made solid propellant rocket has an initial...Ch. 4 - Neglecting air resistance, what speed would a...Ch. 4 - The moving tank shown is to be slowed by lowering...Ch. 4 - The 90 reducing elbow of Example 4.6 discharges to...Ch. 4 - Crude oil (SG = 0:95) from a tanker dock flows...Ch. 4 - The simplified lawn sprinkler shown rotates in the...Ch. 4 - Calculate the torque about the pipes centerline in...Ch. 4 - A fire truck is equipped with a 66 ft long...Ch. 4 - Calculate the torque exerted on the flange joint...Ch. 4 - Consider the sprinkler of Problem 4.130 again....Ch. 4 - A small lawn sprinkler is shown. The sprinkler...Ch. 4 - When a garden hose is used to fill a bucket, water...Ch. 4 - A pipe branches symmetrically into two legs of...Ch. 4 - Compressed air is stored in a pressure bottle with...Ch. 4 - A turbine is supplied with 0.6 m3/s of water from...Ch. 4 - Air is drawn from the atmosphere into a...Ch. 4 - At high speeds the compressor and turbine of the...Ch. 4 - Transverse thrusters are used to make large ships...Ch. 4 - All major harbors are equipped with fire boats for...Ch. 4 - A pump draws water from a reservoir through a...Ch. 4 - Liquid flowing at high speed in a wide, horizontal...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
A nozzle at A discharges water with an initial velocity of 36 ft/s at an angle with the horizontal. Determine ...
Vector Mechanics For Engineers
Consider the following function definition: void too2(int a[ ], int howMany) { for (int index = 0; index howMa...
Problem Solving with C++ (10th Edition)
59. A 100-watt [W] motor (60% efficient) is used to raise a 100-kilogram [kg] toad 5 meters [m] into the air. H...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
How Old Would You Be on Mercury? The length of a Mercurian year is 88 Earth days. Write a program that requests...
Introduction To Programming Using Visual Basic (11th Edition)
Write an SQL statement to display the breed, type, and DOB for all pets having the type Dog and the breed Std. ...
Database Concepts (8th Edition)
Porter’s competitive forces model: The model is used to provide a general view about the firms, the competitors...
Management Information Systems: Managing The Digital Firm (16th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Use Bernoullis equation. Give me right solution with clear calculations.arrow_forwardWater flows from point A in the reservoir through a circular channel of varyingdiameter to its final discharge at point B. Sketch clearly the general trends in the velocity andgauge pressure along the streamline from A to B.arrow_forward2. Water flows in a two-dimensional channel of width W and depth D as shown in the diagram. The hypothetical velocity profile for the water is y? 1- D² 4x2 V (x,y)=|V, 1 where V, is the velocity at the water surface midway between the channel walls. The coordinate system is as shown; x is measured from the center plane of the channel and y downward from the water surface. Find the discharge in the channel in terms of V, D, and W.arrow_forward
- h T D ol B Bernoulli Equation: Water flows from a reservoir down a circular pipe of diameter D = 1 cm at the instant shown. The difference in height between the water's surface in the reservoir and the pipe's outlet is h = 2 m. Assuming viscosity is negligible, calculate the flow rate Q, in cm³/sec, at which water will exit the pipe at the instant shown.arrow_forwardA channel carries water which is forced to pass under a structure, such asShow in Fig. 2. Neglecting energy losses, calculate the pressure in thepoint 1, knowing that the speed at point 2 is 2 m/s. Data Z1 = 0.8m; L1= 1.5 m and L2 = 1.0 m.arrow_forwardQuestion 2. An incompressible fluid flows steadily in the entrance region of a two dimensional channel of height 2h. Density of the fluid is 1.24 kg/m3. The uniform velocity at the channel entrance is U1=5.3m/s The velocity distribution at a section downstream is: 1- ()* и Umax Find out the maximum velocity umax in the downstream section in (m/s).arrow_forward
- Water is discharged form a reservoir into the atmosphere through a pipe 80 m long. There is a sharp entrance to the pipe and the diameter is 250 mm for the first 50 m. The pipe then enlarges suddenly to 450 mm in diameter for the remainder of its length. The outlet is 35 m below the water surface level in the reservoir. Take f = 0.004 for both pipes. Calculate the discharge.arrow_forwardWater falls vertically downward from an open faucet with an initial velocity of 78 cm/s. If the stream diameter at the faucet head is 0.5 cm what is the stream diameter at a distance 5 cm below the faucet exit?arrow_forwardWater particle motions in a small amplitude wave system have resulted in the following data for a depth h = 1 m, at a location z = −0:5 m : (i) major semi-axis of trajectories = 0.1 m; (ii) minor semi-axis of trajectories = 0.05 m. Find wave height, period and length.arrow_forward
- Water flows through a garden hose (ID = 20 mm) with a mean velocity of 1.8 m/s. Find the pressure drop for a section of hose that is 30 meters long and situated horizontally. Assume that f = 0.014.arrow_forwardAs shown in the sketch, fluid with specific gravity, S = 2 flows into a cart sitting on a scale. The stream of fluid has an area of A = 0.126 m2, and a speed of V = 10 m/s. At the instant shown, the weight of the cart plus the fluid is 800 N. Water density = 1000 kg/m, g- 9.81 m/s. Assume steady flow. Determine: %3D %3D Fluid Joo Scalearrow_forwardWhen a pitot tube as shown below is placed in a river with its lower open end facing upstream, water rises in the vertical portion to a height of 50mm above the water surface. Find the flow velocity U. [density of water ρ = 1000kg/m3]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY