Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 50P
A 100-mm nozzle is bolted (with 6 bolts) to the flange of a 300-mm-diameter horizontal pipeline and discharges water into the atmosphere. Calculate the tension load on each bolt when the gage pressure in the pipe is 600 kPa. Neglect vertical forces.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
simple answer no need to explain
Nozzle of diameter 20 mm is fitted to a pipe of diameter 10 min find the force exerted on the water which is flowing through the pipe at the rating 1.2 m/min..
The plunger diameter of a single-acting reciprocating pump is 115 mm and the stroke is 230 mm. The suction pipe is 90 mm in diameter and 4.2 m long. If cavitation takes place at the suction head of 4 m, the barometer stands at 10.3 m of water, and the water level in the sump is 3 m below the pump cylinder axis.1. Find the maximum allowable speed to operate the pump
Chapter 4 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 4 - An ice-cube tray containing 250 mL of freshwater...Ch. 4 - A hot air balloon with an initial volume of 2600...Ch. 4 - A fully loaded Boeing 777-200 jet transport...Ch. 4 - On the Milford Trek in New Zealand, there is a...Ch. 4 - A high school experiment consists of a block of...Ch. 4 - For a small particle of styrofoam (density = 19.2...Ch. 4 - Air at 20C and an absolute pressure of 101.3 kpa...Ch. 4 - A block of copper of mass 5 kg is heated to 90C...Ch. 4 - The average rate of heat loss from a person to the...Ch. 4 - The velocity field in the region shown is given by...
Ch. 4 - The area shown shaded is in a flow where the...Ch. 4 - Obtain an expression for the kinetic energy flux,...Ch. 4 - A 0.3 m by 0.5 m rectangular air duct carries a...Ch. 4 - Across a shock wave in a gas flow there is a great...Ch. 4 - Water flows in a pipeline composed of 75-mm and...Ch. 4 - The velocity distribution for laminar flow in a...Ch. 4 - A farmer is spraying a liquid through 10 nozzles,...Ch. 4 - A university laboratory that generates 15 m3/s of...Ch. 4 - Hydrogen is being pumped through a pipe system...Ch. 4 - Calculate the mean velocities for these...Ch. 4 - If the velocity profile in a passage of width 2R...Ch. 4 - Fluid with 1040 kg/m3 density is flowing steadily...Ch. 4 - A rice farmer needs to fill a 150 m 400 m field...Ch. 4 - In your kitchen, the sink is 60 cm by 45.7 cm. by...Ch. 4 - Fluid passes through this set of thin closely...Ch. 4 - A pipeline 0.3 m in diameter divides at a Y into...Ch. 4 - A manifold pipe of 3 in. diameter has four...Ch. 4 - You are trying to pump storm water out of your...Ch. 4 - In the incompressible flow through the device...Ch. 4 - Water enters a wide, flat channel of height 2h...Ch. 4 - Find the average efflux velocity V if the flow...Ch. 4 - Find V for this mushroom cap on a pipeline. P4.32Ch. 4 - Incompressible fluid flows steadily through a...Ch. 4 - A two-dimensional reducing bend has a linear...Ch. 4 - Water enters a two-dimensional, square channel of...Ch. 4 - Viscous liquid from a circular tank. D = 300 mm in...Ch. 4 - A rectangular tank used to supply water for a...Ch. 4 - A cylindrical tank, 0.3 m in diameter, drains...Ch. 4 - Air enters a tank through an area of 0.018 m2 with...Ch. 4 - A cylindrical tank, of diameter D = 50 mm, drains...Ch. 4 - A conical flask contains water to height H = 36.8...Ch. 4 - Water flows steadily past a porous flat plate....Ch. 4 - A tank of fixed volume contains brine with initial...Ch. 4 - A conical funnel of half-angle = 30 drains...Ch. 4 - Evaluate the net rate of flux of momentum out...Ch. 4 - Water flows steadily through a pipe of length L...Ch. 4 - Evaluate the net momentum flux through the bend of...Ch. 4 - Evaluate the net momentum flux through the channel...Ch. 4 - A conical enlargement in a vertical pipeline is 5...Ch. 4 - A 100-mm nozzle is bolted (with 6 bolts) to the...Ch. 4 - The projectile partially fills the end of the 0.3...Ch. 4 - Considering that in the fully developed region of...Ch. 4 - A jet of water issuing from a stationary nozzle at...Ch. 4 - A circular cylinder inserted across a stream of...Ch. 4 - A 6-in.-diameter horizontal pipeline bends through...Ch. 4 - The axes of the pipes are in a vertical plane. The...Ch. 4 - Water flows through a tee in a horizontal pipe...Ch. 4 - In a laboratory experiment, the water flow rate is...Ch. 4 - A gate is 1 m wide and 1.2 m tall and hinged at...Ch. 4 - Water flows steadily through a fire hose and...Ch. 4 - Two types of gasoline are blended by passing them...Ch. 4 - A circular cylinder inserted across a stream of...Ch. 4 - The pressure difference results from head loss...Ch. 4 - Obtain expressions for the rate of change in mass...Ch. 4 - Water is flowing steadily through the 180 elbow...Ch. 4 - Water flows steadily through the nozzle shown,...Ch. 4 - The pump, suction pipe, discharge pipe, and nozzle...Ch. 4 - The passage is 1.2 m wide normal to the paper....Ch. 4 - If the two-dimensional flow rate through this...Ch. 4 - Assume the bend of Problem 4.35 is a segment of a...Ch. 4 - A flat plate orifice of 50 mm diameter is located...Ch. 4 - At rated thrust, a liquid-fueled rocket motor...Ch. 4 - Flow from the end of a two-dimensional open...Ch. 4 - Calculate the magnitude and direction of the...Ch. 4 - This water jet of 50 mm diameter moving at 30 m/s...Ch. 4 - If the splitter is removed from the plate of...Ch. 4 - Consider flow through the sudden expansion shown....Ch. 4 - A conical spray head is shown. The fluid is water...Ch. 4 - A curved nozzle assembly that discharges to the...Ch. 4 - The pump maintains a pressure of 10 psi at the...Ch. 4 - A motorboat moves up a river at a speed of 9 m/s...Ch. 4 - A 30 reducing elbow is shown. The fluid is water....Ch. 4 - A monotube boiler consists of a 6 m length of...Ch. 4 - Water is discharged at a flow rate of 0.3m3/s from...Ch. 4 - A nozzle for a spray system is designed to produce...Ch. 4 - The horizontal velocity in the wake behind an...Ch. 4 - An incompressible fluid flows steadily in the...Ch. 4 - Consider the incompressible flow of fluid in a...Ch. 4 - Air at standard conditions flows along a flat...Ch. 4 - Gases leaving the propulsion nozzle of a rocket...Ch. 4 - Two large tanks containing water have small...Ch. 4 - Students are playing around with a water hose....Ch. 4 - A 2-kg disk is constrained horizontally but is...Ch. 4 - A stream of water from a 50-mm-diameter nozzle...Ch. 4 - A plane nozzle discharges vertically 1200 L/s per...Ch. 4 - In ancient Egypt, circular vessels filled with...Ch. 4 - Incompressible fluid of negligible viscosity is...Ch. 4 - The narrow gap between two closely spaced circular...Ch. 4 - Design a clepsydra (Egyptian water clock), which...Ch. 4 - Water from a stationary nozzle impinges on a...Ch. 4 - A freshwater jet boat takes in water through side...Ch. 4 - The Canadair CL-215T amphibious aircraft is...Ch. 4 - Water, in a 100-mm-diameter jet with speed of 30...Ch. 4 - Consider a series of turning vanes struck by a...Ch. 4 - A steady jet of water is used to propel a small...Ch. 4 - The cart of Problem 4.105 is accelerated by a jet...Ch. 4 - A vane/slider assembly moves under the influence...Ch. 4 - A cart is propelled by a liquid jet issuing...Ch. 4 - For the vane/slider problem of Problem 4.107, find...Ch. 4 - If the cart of Problem 4.105 is released at t = 0,...Ch. 4 - The wheeled cart shown rolls with negligible...Ch. 4 - A rocket sled is to be slowed from an initial...Ch. 4 - Starting from rest, the cart shown is propelled by...Ch. 4 - Solve Problem 4.107 if the vane and slider ride on...Ch. 4 - For the vane/slider problem of Problem 4.114, plot...Ch. 4 - A rectangular block of mass M, with vertical...Ch. 4 - A vertical jet of water impinges on a horizontal...Ch. 4 - A rocket sled traveling on a horizontal track is...Ch. 4 - A rocket sled accelerates from rest on a level...Ch. 4 - A rocket sled with initial mass of 900 kg is to be...Ch. 4 - A rocket sled with initial mass of 3 metric tons,...Ch. 4 - A home-made solid propellant rocket has an initial...Ch. 4 - Neglecting air resistance, what speed would a...Ch. 4 - The moving tank shown is to be slowed by lowering...Ch. 4 - The 90 reducing elbow of Example 4.6 discharges to...Ch. 4 - Crude oil (SG = 0:95) from a tanker dock flows...Ch. 4 - The simplified lawn sprinkler shown rotates in the...Ch. 4 - Calculate the torque about the pipes centerline in...Ch. 4 - A fire truck is equipped with a 66 ft long...Ch. 4 - Calculate the torque exerted on the flange joint...Ch. 4 - Consider the sprinkler of Problem 4.130 again....Ch. 4 - A small lawn sprinkler is shown. The sprinkler...Ch. 4 - When a garden hose is used to fill a bucket, water...Ch. 4 - A pipe branches symmetrically into two legs of...Ch. 4 - Compressed air is stored in a pressure bottle with...Ch. 4 - A turbine is supplied with 0.6 m3/s of water from...Ch. 4 - Air is drawn from the atmosphere into a...Ch. 4 - At high speeds the compressor and turbine of the...Ch. 4 - Transverse thrusters are used to make large ships...Ch. 4 - All major harbors are equipped with fire boats for...Ch. 4 - A pump draws water from a reservoir through a...Ch. 4 - Liquid flowing at high speed in a wide, horizontal...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Give an example of a data constraint.
Database Concepts (8th Edition)
Explain what happens when a Java program attempts to divide one integer by another. What happens to the fractio...
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Write a Java loop that will display the phrase One more time four times. Also give any declarations or initiali...
Java: An Introduction to Problem Solving and Programming (8th Edition)
Porter’s competitive forces model: The model is used to provide a general view about the firms, the competitors...
Management Information Systems: Managing The Digital Firm (16th Edition)
The ________ object is assumed to exist and it is not necessary to include it as an object when referring to it...
Web Development and Design Foundations with HTML5 (8th Edition)
Write code that does the following: Opens an output file with the filename Numbers.txt, uses a loop to write th...
Starting Out with C++ from Control Structures to Objects (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air flows from a 5-mm diameter nozzle and it strikes a curved vane, which is in a vertical plane as shown in the picture below. A stagnation tube connected to a water U-tube manometer is located in the free air jet. Determine the horizontal component of the force that the air jet exerts on the vane. Neglect the weight of the air and all friction. Air Stagnation Fixed vane tube Water 5-mm diam. Open Free air jet 15 cm 45 30⁰arrow_forwardThe plunger diameter of a single-acting reciprocating pump is 115 mm and the stroke is 230 mm. The suction pipe is 90 mm in diameter and 4.2 m long. If cavitation takes place at the suction head of 4 m, the barometer stands at 10.3 m of water, and the water level in the sump is 3 m below the pump cylinder axis. 3.1 Find the maximum allowable speed to operate the pump 3.2 What power is expected in overcoming friction at this speed, takef = 0.01arrow_forwardThe plunger diameter of a single-acting reciprocating pump is 115 mm and the stroke is 230 mm. The suction pipe is 90 mm in diameter and 4.2 m long. If cavitation takes place at the suction head of 4 m, the barometer stands at 10.3 m of water, and the water level in the sump is 3 m below the pump cylinder axis.3.1 Find the maximum allowable speed to operate the pump3.2 What power is expected in overcoming friction at this speed, take ƒ = 0.01arrow_forward
- A nozzle that discharges a 60-mm-diameter water jet into the air is on the right end of a horizontal 120-mm- diameter pipe. In the line, the water has a velocity of 4 m/s and a gage pressure of 400 kPa. Find the magnitude and direction of the resultant axial force the water exerts on the nozzle and the head loss in the nozzle.arrow_forwardC2. A conical tube is fixed vertically with its smaller end upwards and it forms a part of the pipeline. The diameter at the smaller end is 245 mm and at the larger end is 467 mm. The length of the conical tube is 1.8 m and the flow rate of the oil is 128 liters/s. The pressure at the smaller end is equivalent to a head of 9.7 m of oil. Considering the following two cases: (1) Neglecting friction, (without head loss) determine (i) the velocity at the smaller end in m/s, (ii) the velocity at the larger end in m/s, and (iii) the pressure at the larger end of the tube. (2) If a head loss (with head loss) in the tube is hL= 0.0153(V1-V2)2, where V1 is the velocity at the smaller end and V2 is the velocity at the larger end, determine (iv) the head loss in m of oil and (v) the pressure at the larger end of the tube.arrow_forwardC2. A conical tube is fixed vertically with its smaller end upwards and it forms a part of the pipeline. The diameter at the smaller end is 245 mm and at the larger end is 467 mm. The length of the conical tube is 1.8 m and the flow rate of the oil is 128 liters/s. The pressure at the smaller end is equivalent to a head of 9.7 m of oil. Considering the following two cases: (1) Neglecting friction, (without head loss) determine (i) the velocity at the smaller end in m/s, (ii) the velocity at the larger end in m/s, and (iii) the pressure at the larger end of the tube. (2) If a head loss (with head loss) in the tube is hL= 0.0153(V1-V2)2, where V1 is the velocity at the smaller end and V2 is the velocity at the larger end, determine (iv) the head loss in m of oil and (v) the pressure at the larger end of the tube.arrow_forward
- 1a. Water flows into a tee fitting at a flow rate of 0.02 m3 /s. A pipe is connected to B. The pressure at B is 70 kPa. Find the pressure forces at B and C then determine the horizontal and vertical forces needed at the fixed support A, along with the moment required at A to hold the pipe in equilibrium. Neglect the resistance provided by the pipes at B and C, as well as the weights of the pipe and water. (view image for this problem) 1b.Glycerin (ρ=1260 kg/m3 and µ=1.5 N.s/m2 ) flows through a 250-mm diameter, horizontal smooth pipe with an average velocity of 4 m/s. Determine the pressure drop in a 20 m long segment of the pipe.arrow_forwardProblem 5.2.28 of Gehart, et al. (Problem 66, 7th ed.) Air discharges from a 2-in.-diameter nozzle and strikes a curved vane, which is in a vertical plane, as shown below. A stagnation tube connected to a water U-tube manometer is located in the free air jet. Determine the horizontal component of the force that the air jet exerts on the vane. Neglect the weight of the air and all friction. Air Open Water- Stagnation tube 7 in. r Fixed vane 12-in. dia. Free air jet 30°arrow_forwardThe pressure reading coming out of a pump is 150 lb. Every 50 ft section reduces the pressure by about 4%. What will the nozzle pressure be at the end of six 50 ft sections? (Hint: One reduction of 24% is not equivalent to six reductions of 4% each. You must do this the long way.)arrow_forward
- A hemispherical tank of diameter 4 m contains water up to a height of 2.0 m. An orifice of diameter 50 mm is provided at the bottom. Find the time required by water (i) to fall from 2.0 m to 1.0 m (ii) for completely emptying the tank. Take Cd= 0.6arrow_forwardThree hundred and eighty five gallons of water per minute is flowing through a 4.3-in radius horizontal pipe. If the bore of the pipe is reduced to 2.7-in radius and the pressure in the smaller pipe is 93 psig, what is the pressure in the larger section of the pipe? Include schematic diagram.arrow_forward3. Air flows steadily through a pipe of circular cross-section shown below. At point 2, a tube connected to the pipe extends downward into a tub of water at rest. Air leaves the pipe at point 3 to the atmosphere. For the pipe, the cross-sectional areas A₁ = A3 > A2. Derive an expression for the height h to which water will rise in the vertical tube, as a function of the specific gravity of air (SG Pair Pwater), velocity at point 1 (V₁), pipe diameters at point 1 (D₁) and point 2 (D2), and any relevant constants. You may assume that air is incompressible and inviscid (thus, flow variables are all uniform at any cross-section). = Air in 1 2 3 Air outarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License