Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 81P
A motorboat moves up a river at a speed of 9 m/s relative to the land. The river flows at a velocity of 1.5 m/s. The boat is powered by a jet-propulsion unit which takes in water at the bow and discharges it beneath the surface at the stern. Measurements in the jet show its velocity relative to the boat to be 18 m/s. For a flow rate through the unit of 0.15 m3/s, calculate the propulsive force produced.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
C.
A pump delivers 25 L/s of water with a head of 35 m and runs at a speed of 2950 rpm
for 8 hours per day. The shaft power is 11.5 kW. The electric motor driving the pump
has an efficiency of 84% and the cost of electricity is 15 cents per kWh. Evaluate the
cost of electricity to run the pump in a day.
A jet of 50mm diameter impinges on a curved vane and is deflected through an angle of 175 degree. The vane moves in the same direction as that of jet with a velocity of 35m / s. If the rate of flow is 170 L / s, determine the component of force on the vane in the direction of motion. How much would be the power developed by the vane and what would be the water efficiency? Neglect friction.
A 25Hp suction pump operating at 56.30% efficiency draws water from a suction line whose diameter is 205mm and discharges into air through a line whose diameter is 155mm . The velocity in the 155mm line is 4m/s . If the pressure at point A in the suction pipe is -32kpa (negative sign indicate the pressure is below the atmosphere), where A is 1.8m below B on the 155mm line, determine the maximum elevation above B to which water can be raised assuming a head loss of 2.9m due to friction.
Chapter 4 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 4 - An ice-cube tray containing 250 mL of freshwater...Ch. 4 - A hot air balloon with an initial volume of 2600...Ch. 4 - A fully loaded Boeing 777-200 jet transport...Ch. 4 - On the Milford Trek in New Zealand, there is a...Ch. 4 - A high school experiment consists of a block of...Ch. 4 - For a small particle of styrofoam (density = 19.2...Ch. 4 - Air at 20C and an absolute pressure of 101.3 kpa...Ch. 4 - A block of copper of mass 5 kg is heated to 90C...Ch. 4 - The average rate of heat loss from a person to the...Ch. 4 - The velocity field in the region shown is given by...
Ch. 4 - The area shown shaded is in a flow where the...Ch. 4 - Obtain an expression for the kinetic energy flux,...Ch. 4 - A 0.3 m by 0.5 m rectangular air duct carries a...Ch. 4 - Across a shock wave in a gas flow there is a great...Ch. 4 - Water flows in a pipeline composed of 75-mm and...Ch. 4 - The velocity distribution for laminar flow in a...Ch. 4 - A farmer is spraying a liquid through 10 nozzles,...Ch. 4 - A university laboratory that generates 15 m3/s of...Ch. 4 - Hydrogen is being pumped through a pipe system...Ch. 4 - Calculate the mean velocities for these...Ch. 4 - If the velocity profile in a passage of width 2R...Ch. 4 - Fluid with 1040 kg/m3 density is flowing steadily...Ch. 4 - A rice farmer needs to fill a 150 m 400 m field...Ch. 4 - In your kitchen, the sink is 60 cm by 45.7 cm. by...Ch. 4 - Fluid passes through this set of thin closely...Ch. 4 - A pipeline 0.3 m in diameter divides at a Y into...Ch. 4 - A manifold pipe of 3 in. diameter has four...Ch. 4 - You are trying to pump storm water out of your...Ch. 4 - In the incompressible flow through the device...Ch. 4 - Water enters a wide, flat channel of height 2h...Ch. 4 - Find the average efflux velocity V if the flow...Ch. 4 - Find V for this mushroom cap on a pipeline. P4.32Ch. 4 - Incompressible fluid flows steadily through a...Ch. 4 - A two-dimensional reducing bend has a linear...Ch. 4 - Water enters a two-dimensional, square channel of...Ch. 4 - Viscous liquid from a circular tank. D = 300 mm in...Ch. 4 - A rectangular tank used to supply water for a...Ch. 4 - A cylindrical tank, 0.3 m in diameter, drains...Ch. 4 - Air enters a tank through an area of 0.018 m2 with...Ch. 4 - A cylindrical tank, of diameter D = 50 mm, drains...Ch. 4 - A conical flask contains water to height H = 36.8...Ch. 4 - Water flows steadily past a porous flat plate....Ch. 4 - A tank of fixed volume contains brine with initial...Ch. 4 - A conical funnel of half-angle = 30 drains...Ch. 4 - Evaluate the net rate of flux of momentum out...Ch. 4 - Water flows steadily through a pipe of length L...Ch. 4 - Evaluate the net momentum flux through the bend of...Ch. 4 - Evaluate the net momentum flux through the channel...Ch. 4 - A conical enlargement in a vertical pipeline is 5...Ch. 4 - A 100-mm nozzle is bolted (with 6 bolts) to the...Ch. 4 - The projectile partially fills the end of the 0.3...Ch. 4 - Considering that in the fully developed region of...Ch. 4 - A jet of water issuing from a stationary nozzle at...Ch. 4 - A circular cylinder inserted across a stream of...Ch. 4 - A 6-in.-diameter horizontal pipeline bends through...Ch. 4 - The axes of the pipes are in a vertical plane. The...Ch. 4 - Water flows through a tee in a horizontal pipe...Ch. 4 - In a laboratory experiment, the water flow rate is...Ch. 4 - A gate is 1 m wide and 1.2 m tall and hinged at...Ch. 4 - Water flows steadily through a fire hose and...Ch. 4 - Two types of gasoline are blended by passing them...Ch. 4 - A circular cylinder inserted across a stream of...Ch. 4 - The pressure difference results from head loss...Ch. 4 - Obtain expressions for the rate of change in mass...Ch. 4 - Water is flowing steadily through the 180 elbow...Ch. 4 - Water flows steadily through the nozzle shown,...Ch. 4 - The pump, suction pipe, discharge pipe, and nozzle...Ch. 4 - The passage is 1.2 m wide normal to the paper....Ch. 4 - If the two-dimensional flow rate through this...Ch. 4 - Assume the bend of Problem 4.35 is a segment of a...Ch. 4 - A flat plate orifice of 50 mm diameter is located...Ch. 4 - At rated thrust, a liquid-fueled rocket motor...Ch. 4 - Flow from the end of a two-dimensional open...Ch. 4 - Calculate the magnitude and direction of the...Ch. 4 - This water jet of 50 mm diameter moving at 30 m/s...Ch. 4 - If the splitter is removed from the plate of...Ch. 4 - Consider flow through the sudden expansion shown....Ch. 4 - A conical spray head is shown. The fluid is water...Ch. 4 - A curved nozzle assembly that discharges to the...Ch. 4 - The pump maintains a pressure of 10 psi at the...Ch. 4 - A motorboat moves up a river at a speed of 9 m/s...Ch. 4 - A 30 reducing elbow is shown. The fluid is water....Ch. 4 - A monotube boiler consists of a 6 m length of...Ch. 4 - Water is discharged at a flow rate of 0.3m3/s from...Ch. 4 - A nozzle for a spray system is designed to produce...Ch. 4 - The horizontal velocity in the wake behind an...Ch. 4 - An incompressible fluid flows steadily in the...Ch. 4 - Consider the incompressible flow of fluid in a...Ch. 4 - Air at standard conditions flows along a flat...Ch. 4 - Gases leaving the propulsion nozzle of a rocket...Ch. 4 - Two large tanks containing water have small...Ch. 4 - Students are playing around with a water hose....Ch. 4 - A 2-kg disk is constrained horizontally but is...Ch. 4 - A stream of water from a 50-mm-diameter nozzle...Ch. 4 - A plane nozzle discharges vertically 1200 L/s per...Ch. 4 - In ancient Egypt, circular vessels filled with...Ch. 4 - Incompressible fluid of negligible viscosity is...Ch. 4 - The narrow gap between two closely spaced circular...Ch. 4 - Design a clepsydra (Egyptian water clock), which...Ch. 4 - Water from a stationary nozzle impinges on a...Ch. 4 - A freshwater jet boat takes in water through side...Ch. 4 - The Canadair CL-215T amphibious aircraft is...Ch. 4 - Water, in a 100-mm-diameter jet with speed of 30...Ch. 4 - Consider a series of turning vanes struck by a...Ch. 4 - A steady jet of water is used to propel a small...Ch. 4 - The cart of Problem 4.105 is accelerated by a jet...Ch. 4 - A vane/slider assembly moves under the influence...Ch. 4 - A cart is propelled by a liquid jet issuing...Ch. 4 - For the vane/slider problem of Problem 4.107, find...Ch. 4 - If the cart of Problem 4.105 is released at t = 0,...Ch. 4 - The wheeled cart shown rolls with negligible...Ch. 4 - A rocket sled is to be slowed from an initial...Ch. 4 - Starting from rest, the cart shown is propelled by...Ch. 4 - Solve Problem 4.107 if the vane and slider ride on...Ch. 4 - For the vane/slider problem of Problem 4.114, plot...Ch. 4 - A rectangular block of mass M, with vertical...Ch. 4 - A vertical jet of water impinges on a horizontal...Ch. 4 - A rocket sled traveling on a horizontal track is...Ch. 4 - A rocket sled accelerates from rest on a level...Ch. 4 - A rocket sled with initial mass of 900 kg is to be...Ch. 4 - A rocket sled with initial mass of 3 metric tons,...Ch. 4 - A home-made solid propellant rocket has an initial...Ch. 4 - Neglecting air resistance, what speed would a...Ch. 4 - The moving tank shown is to be slowed by lowering...Ch. 4 - The 90 reducing elbow of Example 4.6 discharges to...Ch. 4 - Crude oil (SG = 0:95) from a tanker dock flows...Ch. 4 - The simplified lawn sprinkler shown rotates in the...Ch. 4 - Calculate the torque about the pipes centerline in...Ch. 4 - A fire truck is equipped with a 66 ft long...Ch. 4 - Calculate the torque exerted on the flange joint...Ch. 4 - Consider the sprinkler of Problem 4.130 again....Ch. 4 - A small lawn sprinkler is shown. The sprinkler...Ch. 4 - When a garden hose is used to fill a bucket, water...Ch. 4 - A pipe branches symmetrically into two legs of...Ch. 4 - Compressed air is stored in a pressure bottle with...Ch. 4 - A turbine is supplied with 0.6 m3/s of water from...Ch. 4 - Air is drawn from the atmosphere into a...Ch. 4 - At high speeds the compressor and turbine of the...Ch. 4 - Transverse thrusters are used to make large ships...Ch. 4 - All major harbors are equipped with fire boats for...Ch. 4 - A pump draws water from a reservoir through a...Ch. 4 - Liquid flowing at high speed in a wide, horizontal...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
The thin-walled cylinder can be supported in one of two ways as shown. Determine the state of stress in the wal...
Mechanics of Materials (10th Edition)
How would you change the class MergeSort so that it can sort an array of values of type int into decreasing ord...
Java: An Introduction to Problem Solving and Programming (8th Edition)
A file that contains a Flash animation uses the __________ file extension. a. .class b. .swf c. .mp3 d. .flash
Web Development and Design Foundations with HTML5 (8th Edition)
How are the spot welds produced by gas tungsten arc spot welding different from those made by conventional resi...
Degarmo's Materials And Processes In Manufacturing
What is the importance of modeling in engineering? How are the mathematical models for engineering processes pr...
HEAT+MASS TRANSFER:FUND.+APPL.
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.09 m3/s and at a velocity of 5 m/s, and leaves in the normal direction along the pump casing, as shown in Determine the force acting on the shaft (which is also the force acting on the bearing of the shaft) in the axial direction.arrow_forwardThe opening at point C is inclined at 45 degrees. Find the maximum height that the water can reach, measured from the datum line. Also, calculate the range.arrow_forwardA pump with an impeller diameter of 300 mm running at a speed of 2950 rev/min delivering 450 L/min of water at a head of 350 kPa is going to be replaced by a geometrically similar spare pump running at a speed of 1450 rev/min delivering the same flow rate and head. Determine the impeller size of the spare pump and the percentage increase (decrease) of power required for the spare pump. OL. 380.1 mm; a decrease of 61.33% OI., 380.1 mm; an increase of 38.77% I. 147.5 mm; an increase of 3.4% IV. 210.3 mm; a decrease of 83.1%arrow_forward
- Situation 7: A schematic of a garden fountain is given in the figure. A pump located beneath a water reservoir discharges a single jet vertically upward to a height of 6 ft above the reservoir surface. Under ideal conditions, the volume flow of liquid is 250 gpm. (1 ft3 = 7.48 gal) Determine the power deliverd added by the pumpin order to raise the water to 6 feet. Neglect friction. 6 ft Assuming that the jet remains circular at the rate of water flowing given, What is the diameter of the jet at one-third the height of the fountain? 2 ft Compute the pressure in the 6" diameter suction pipe 18 in. Ref. Datum Pumparrow_forwardTwo geometrically similar pumps are running at the speed of 1500rpm and 3000rpm. One pump has an impeller diameter of 0.40 m and lifts water at the rate of 0.03 liters/sec against a head of 20 meters. Determine the head, discharge and ratio of powers of said pump of diameter 0.25m.arrow_forwardA storm drain has a maximum capacity of 120 L/min. During heavy rains, an influx of 240 L/min approaches the drain. Assuming the drain is cylindrical, by how much would the drain radius need to be increased to handle the heavier rainfall? Assume the water travels at the same linear speed in both drains. The answer is 1.4. Please explain why A 16 times greater B 42 times greater C 2 times greater D 1.4 times greaterarrow_forward
- A centrifugal pump discharging 900 gpm and operates at 1800 rpm against a head of 120 feet has a power output of 30 hp. If the pump is to operate at 1200 rpm assuming efficiency remains constant. Determine the new discharge in gpm, the head and power.arrow_forwardA water jet with a flow rate of 2.83 m3 / s is traveling at 6 m / s in the positive x direction. The cost of the current striking a stationary splitter is correct about a 45 aç angle, other company are deflected downwards by the same angle and the final velocities of the two streams are 6 m / s. By neglecting the gravity, the separator is in place against the force applied by the water. calculate the x- and z- power of what is required to hold it. For water ? = 1.184 kg / m3arrow_forwardIf the velocity of water is 8m/s and the pressure is 140 kPa on the discharge side of a pump, What will be the head of the pump if the velocity is 4 m/s and the pressure is 90 kPa on the suction side of the pump? How much power is required to drive it if the diameter of suction side is 600 mm? If the pump is rated at 120 hp, what is the efficiency of the pump neglecting energy losses in the system?arrow_forward
- A Pelton wheel has a mean bucket speed of 10 meters per second with a jet of water flowing at a rate of 700 liters/s under a head of 30 meters. The buckets deflect the jet through an angle of 160°. Calculate the power given by water to the runner and the hydraulic efficiency of the turbine. Assume co-efficient of velocity as 0.98.arrow_forwardAn incompressible fluid flows steadily through two pipes of diameter 0.15 m and 0.2 m which combine to discharge in a pipe of 0.3 diameter. If the average velocities in the 0.15 m and 0.2 m diameter pipes are 2 m/s and 3 m/s respectively, then find the average velocity in the 0.3 m diameter pipe.arrow_forwardA jet airplane moving at 900 km/hr takes 700 N/s of air into is engine, burns 15 N/s of fuel, and discharges the exhaust gasses at atmospheric pressure. If the thrust of the engine is 40,000 N, what is the absolute velocity of the gases in meters per seconds?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License