Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 14P
Across a shock wave in a gas flow there is a great change in gas density ρ. If a shock wave occurs in a duct such that V = 660 m/s and ρ = 1.0 kg/m3 before the shock and V = 250 m/s after the shock, what is ρ after the shock?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An airplane is flying at 350 mi/h at 4000 m standard altitude. As is typical, the air velocity relative to the upper
surface of the wing, near its maximum thickness, is 26 percent higher than the plane's velocity. Using
Bernoulli's equation, calculate the absolute pressure at this point on the wing. Neglect elevation changes and
compressibility. (The properties of air at 4000 m are p = 61633 Pa, p = 0.8191 kg/m³)
Pa
A piston moves with constant velocity U0 in a cylinder having radius R. A liquid having density leaves the open end with conical velocity proÖle V~ = V0(1-r/R)^k.Figure for problem 1.(a) If the exhaust port is closed, find the value of V0 in terms of U0. Be sure to define an appropriate control volume for solving this problem.(b) If V0 = U0, find the volume áow rate leaving through the exhaust port (in terms of U0 and R)
The flow just upstream of a normal shock wave is given by p1 = corresponds to your assigned altitude, T1 =corresponds to your assigned altitude , and M1 = 2.6. Calculate the following properties just downstream of the shock: p2, T2, ρ2, M2, p0,2, T0,2, and the change in entropy across the shock.
Altitude given: 5305m
Chapter 4 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 4 - An ice-cube tray containing 250 mL of freshwater...Ch. 4 - A hot air balloon with an initial volume of 2600...Ch. 4 - A fully loaded Boeing 777-200 jet transport...Ch. 4 - On the Milford Trek in New Zealand, there is a...Ch. 4 - A high school experiment consists of a block of...Ch. 4 - For a small particle of styrofoam (density = 19.2...Ch. 4 - Air at 20C and an absolute pressure of 101.3 kpa...Ch. 4 - A block of copper of mass 5 kg is heated to 90C...Ch. 4 - The average rate of heat loss from a person to the...Ch. 4 - The velocity field in the region shown is given by...
Ch. 4 - The area shown shaded is in a flow where the...Ch. 4 - Obtain an expression for the kinetic energy flux,...Ch. 4 - A 0.3 m by 0.5 m rectangular air duct carries a...Ch. 4 - Across a shock wave in a gas flow there is a great...Ch. 4 - Water flows in a pipeline composed of 75-mm and...Ch. 4 - The velocity distribution for laminar flow in a...Ch. 4 - A farmer is spraying a liquid through 10 nozzles,...Ch. 4 - A university laboratory that generates 15 m3/s of...Ch. 4 - Hydrogen is being pumped through a pipe system...Ch. 4 - Calculate the mean velocities for these...Ch. 4 - If the velocity profile in a passage of width 2R...Ch. 4 - Fluid with 1040 kg/m3 density is flowing steadily...Ch. 4 - A rice farmer needs to fill a 150 m 400 m field...Ch. 4 - In your kitchen, the sink is 60 cm by 45.7 cm. by...Ch. 4 - Fluid passes through this set of thin closely...Ch. 4 - A pipeline 0.3 m in diameter divides at a Y into...Ch. 4 - A manifold pipe of 3 in. diameter has four...Ch. 4 - You are trying to pump storm water out of your...Ch. 4 - In the incompressible flow through the device...Ch. 4 - Water enters a wide, flat channel of height 2h...Ch. 4 - Find the average efflux velocity V if the flow...Ch. 4 - Find V for this mushroom cap on a pipeline. P4.32Ch. 4 - Incompressible fluid flows steadily through a...Ch. 4 - A two-dimensional reducing bend has a linear...Ch. 4 - Water enters a two-dimensional, square channel of...Ch. 4 - Viscous liquid from a circular tank. D = 300 mm in...Ch. 4 - A rectangular tank used to supply water for a...Ch. 4 - A cylindrical tank, 0.3 m in diameter, drains...Ch. 4 - Air enters a tank through an area of 0.018 m2 with...Ch. 4 - A cylindrical tank, of diameter D = 50 mm, drains...Ch. 4 - A conical flask contains water to height H = 36.8...Ch. 4 - Water flows steadily past a porous flat plate....Ch. 4 - A tank of fixed volume contains brine with initial...Ch. 4 - A conical funnel of half-angle = 30 drains...Ch. 4 - Evaluate the net rate of flux of momentum out...Ch. 4 - Water flows steadily through a pipe of length L...Ch. 4 - Evaluate the net momentum flux through the bend of...Ch. 4 - Evaluate the net momentum flux through the channel...Ch. 4 - A conical enlargement in a vertical pipeline is 5...Ch. 4 - A 100-mm nozzle is bolted (with 6 bolts) to the...Ch. 4 - The projectile partially fills the end of the 0.3...Ch. 4 - Considering that in the fully developed region of...Ch. 4 - A jet of water issuing from a stationary nozzle at...Ch. 4 - A circular cylinder inserted across a stream of...Ch. 4 - A 6-in.-diameter horizontal pipeline bends through...Ch. 4 - The axes of the pipes are in a vertical plane. The...Ch. 4 - Water flows through a tee in a horizontal pipe...Ch. 4 - In a laboratory experiment, the water flow rate is...Ch. 4 - A gate is 1 m wide and 1.2 m tall and hinged at...Ch. 4 - Water flows steadily through a fire hose and...Ch. 4 - Two types of gasoline are blended by passing them...Ch. 4 - A circular cylinder inserted across a stream of...Ch. 4 - The pressure difference results from head loss...Ch. 4 - Obtain expressions for the rate of change in mass...Ch. 4 - Water is flowing steadily through the 180 elbow...Ch. 4 - Water flows steadily through the nozzle shown,...Ch. 4 - The pump, suction pipe, discharge pipe, and nozzle...Ch. 4 - The passage is 1.2 m wide normal to the paper....Ch. 4 - If the two-dimensional flow rate through this...Ch. 4 - Assume the bend of Problem 4.35 is a segment of a...Ch. 4 - A flat plate orifice of 50 mm diameter is located...Ch. 4 - At rated thrust, a liquid-fueled rocket motor...Ch. 4 - Flow from the end of a two-dimensional open...Ch. 4 - Calculate the magnitude and direction of the...Ch. 4 - This water jet of 50 mm diameter moving at 30 m/s...Ch. 4 - If the splitter is removed from the plate of...Ch. 4 - Consider flow through the sudden expansion shown....Ch. 4 - A conical spray head is shown. The fluid is water...Ch. 4 - A curved nozzle assembly that discharges to the...Ch. 4 - The pump maintains a pressure of 10 psi at the...Ch. 4 - A motorboat moves up a river at a speed of 9 m/s...Ch. 4 - A 30 reducing elbow is shown. The fluid is water....Ch. 4 - A monotube boiler consists of a 6 m length of...Ch. 4 - Water is discharged at a flow rate of 0.3m3/s from...Ch. 4 - A nozzle for a spray system is designed to produce...Ch. 4 - The horizontal velocity in the wake behind an...Ch. 4 - An incompressible fluid flows steadily in the...Ch. 4 - Consider the incompressible flow of fluid in a...Ch. 4 - Air at standard conditions flows along a flat...Ch. 4 - Gases leaving the propulsion nozzle of a rocket...Ch. 4 - Two large tanks containing water have small...Ch. 4 - Students are playing around with a water hose....Ch. 4 - A 2-kg disk is constrained horizontally but is...Ch. 4 - A stream of water from a 50-mm-diameter nozzle...Ch. 4 - A plane nozzle discharges vertically 1200 L/s per...Ch. 4 - In ancient Egypt, circular vessels filled with...Ch. 4 - Incompressible fluid of negligible viscosity is...Ch. 4 - The narrow gap between two closely spaced circular...Ch. 4 - Design a clepsydra (Egyptian water clock), which...Ch. 4 - Water from a stationary nozzle impinges on a...Ch. 4 - A freshwater jet boat takes in water through side...Ch. 4 - The Canadair CL-215T amphibious aircraft is...Ch. 4 - Water, in a 100-mm-diameter jet with speed of 30...Ch. 4 - Consider a series of turning vanes struck by a...Ch. 4 - A steady jet of water is used to propel a small...Ch. 4 - The cart of Problem 4.105 is accelerated by a jet...Ch. 4 - A vane/slider assembly moves under the influence...Ch. 4 - A cart is propelled by a liquid jet issuing...Ch. 4 - For the vane/slider problem of Problem 4.107, find...Ch. 4 - If the cart of Problem 4.105 is released at t = 0,...Ch. 4 - The wheeled cart shown rolls with negligible...Ch. 4 - A rocket sled is to be slowed from an initial...Ch. 4 - Starting from rest, the cart shown is propelled by...Ch. 4 - Solve Problem 4.107 if the vane and slider ride on...Ch. 4 - For the vane/slider problem of Problem 4.114, plot...Ch. 4 - A rectangular block of mass M, with vertical...Ch. 4 - A vertical jet of water impinges on a horizontal...Ch. 4 - A rocket sled traveling on a horizontal track is...Ch. 4 - A rocket sled accelerates from rest on a level...Ch. 4 - A rocket sled with initial mass of 900 kg is to be...Ch. 4 - A rocket sled with initial mass of 3 metric tons,...Ch. 4 - A home-made solid propellant rocket has an initial...Ch. 4 - Neglecting air resistance, what speed would a...Ch. 4 - The moving tank shown is to be slowed by lowering...Ch. 4 - The 90 reducing elbow of Example 4.6 discharges to...Ch. 4 - Crude oil (SG = 0:95) from a tanker dock flows...Ch. 4 - The simplified lawn sprinkler shown rotates in the...Ch. 4 - Calculate the torque about the pipes centerline in...Ch. 4 - A fire truck is equipped with a 66 ft long...Ch. 4 - Calculate the torque exerted on the flange joint...Ch. 4 - Consider the sprinkler of Problem 4.130 again....Ch. 4 - A small lawn sprinkler is shown. The sprinkler...Ch. 4 - When a garden hose is used to fill a bucket, water...Ch. 4 - A pipe branches symmetrically into two legs of...Ch. 4 - Compressed air is stored in a pressure bottle with...Ch. 4 - A turbine is supplied with 0.6 m3/s of water from...Ch. 4 - Air is drawn from the atmosphere into a...Ch. 4 - At high speeds the compressor and turbine of the...Ch. 4 - Transverse thrusters are used to make large ships...Ch. 4 - All major harbors are equipped with fire boats for...Ch. 4 - A pump draws water from a reservoir through a...Ch. 4 - Liquid flowing at high speed in a wide, horizontal...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
By doing this, you can hide a classs attribute from code outside the class. a. avoid using the self parameter t...
Starting Out with Python (4th Edition)
19. A rod on the surface of Jupiter’s moon Callisto has a volume of 0.3 cubic meters [m3]. Determine the weight...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
What is a default constructor? Is it possible to have more than one default constructor?
Starting Out with C++ from Control Structures to Objects (9th Edition)
The following are instructions written in Vole machine language. Rewrite them in English. a. 0x368A b. 0xBADE c...
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
The current source in the circuit shown generates the current pulse
Find (a) v (0); (b) the instant of time gr...
Electric Circuits. (11th Edition)
What is pseudocode?
Starting Out With Visual Basic (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In an oil pool, a small steel ball is released from the surface (y=0) without initial velocity. The strength of the resistance force exerted by the oil against the movement of the ball is directly proportional to the speed of the ball (Fd = k*V , k: constant). Neglect the buoyant force exerted by the oil. (m = 0.2kg, k = 0.843550 kg/s, g = 9.81 m/s^2). a-) What is the limit speed of ball ( Vlim)? b-) What is the time it takes for the speed of the ball to reach 99% of the limit speed after it is released from the surface? c-) What is the depth at which the ball's velocity reaches 99% of the limit velocity after it is released from the surface?arrow_forwardWater with density of 1000 kg/m^3 flows through a horizontal pipe (in the x-z plane) bend as shown. The weight of the pipe is 350 N and the pipe cross-sectional area is constant and equals to 0.35 m^2. The magnitude of the inlet velocity is 4 m/s. The absolute pressures at the entrance and exit of the bend are 210 kPa and 110 kPa, respectively. Assuming the atmospheric pressure is 100 kPa and neglecting the weight and viscosity of the water , find the following: A)If the area of section 2 is doubled, then the velocity will be halved but the momentum flux will still be the same: ture or false ?arrow_forwardWater with density of 1000 kg/m^3 flows through a horizontal pipe (in the x-z plane) bend as shown. The weight of the pipe is 350 N and the pipe cross-sectional area is constant and equals to 0.35 m^2. The magnitude of the inlet velocity is 4 m/s. The absolute pressures at the entrance and exit of the bend are 210 kPa and 110 kPa, respectively. Assuming the atmospheric pressure is 100 kPa and neglecting the weight and viscosity of the water , find the following: A)The force (in the x-axis direction) acting on the fluid? B)The force (in the z-axis direction) acting on the pipe? C)The reaction force in the y direction ?arrow_forward
- Water with density of 1000 kg/m^3 flows through a horizontal pipe (in the x-z plane) bend as shown. The weight of the pipe is 350 N and the pipe cross-sectional area is constant and equals to 0.35 m^2. The magnitude of the inlet velocity is 4 m/s. The absolute pressures at the entrance and exit of the bend are 210 kPa and 110 kPa, respectively. Assuming the atmospheric pressure is 100 kPa and neglecting the weight and viscosity of the water , find the following:arrow_forwardA very popular toy on the market several years ago was the water rocket. Water (at 10°C) was loaded into a plastic rocket and pressurized with a hand pump. The rocket was released and would travel a considerable distance in the air. Assume that a water rocket has a mass of 50 g and is charged with 100 g of water. The pressure inside the rocket is 100 kPa gage. The exit area is one-tenth of the chamber crosssectional area. The inside diameter of the rocket is 5 cm. Assume that Bernoulli's equation is valid for the water flow inside the rocket. Neglecting air friction, calculate the maximum velocity it will attain. 5 cm PROBLEM 6.90 100 kPaarrow_forwardWater with density of 1000 kg/m^3 flows through a horizontal pipe (in the x-z plane) bend as shown. The weight of the pipe is 350 N and the pipe cross-sectional area is constant and equals to 0.35 m^2. The magnitude of the inlet velocity is Section (1) 4 m/s. The absolute pressures at the entrance and exit of the bend are 210 kPa and 110 kPa, respectively. Assuming the atmospheric pressure is 100 kPa and neglecting the weight and viscosity of the water , find the following: Control volume The mass flow rate is 180° pipe bend Section (2) The exit velocity is The force (in the z-axis direction) acting on the fluid isarrow_forward
- assisstancearrow_forwardThe venturi nozzle in the airflow experiment measures a static pressure of 7 psf (lb/ft2 ) before the nozzle and a static pressure of 2 psf after the nozzle. If the Reynolds Number of the flow is 5.7E+04, gc = 32.17 lmm-ft/lbf -s2 , ρ = 0.075 lbm/f t3 Dpipe = 5 in, and Dventuri = 2.74 in, find the flow rate in the pipe. Present answer in cfm.arrow_forwardA very popular toy on the market several years ago was the water rocket. Water (at 10°C) was loaded into a plastic rocket and pressurized with a hand pump. The rocket was released and would travel a considerable distance in the air. Assume that a water rocket has a mass of 50g and is charged with 100g of water. The pressure inside the rocket is 100kPa gage. The exit area is one-tenth of the chamber cross-sectional area. The inside diameter of the rocket is 5cm. Assume that Bernoulli’s equation is valid for the water flow inside the rocket. Neglecting air friction calculate the maximum velocity it will attain.arrow_forward
- Consider the following compressor that receives air at a constant rate of three cubic feet per second. Air exits the compressor at a pressure of 95 pounds per square inch and 425 °F. Assume that there are no changes in potential or kinetic energy. With the assumption that there are constant specific heats, what is the power, in hp, consumed by the compressor? Surrounding P1=14.5 psi and T1= 68 °Farrow_forwardAir at 15 °C flows steadily along a streamline from point (1) to point (2) with negligible viscous effects. The following conditions are measured: at point (1) z₁ = 3.5 m and p₁ = 0 kPa; at point (2) Z₂ = 10 m, P2 = 21 N/m², and V₂ = 0. Determine the velocity at point (1). For air at 15 °C, p = 1.225 kg/m³. V₁ = m/sarrow_forwardWater steam is running through the nozzle. Inlet pressure is P1=25 bars; T1=300C; V1=90m/s; A1=0.2m2. The exit parameters are: P2=11bars; T2=210C. The mass flow rate is m=2 kg/s. Determine: a.Exit velocity V2=?; b.Inlet and outlet diameters D1 and D2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License