Water with density of 1000 kg/m^3 flows through a horizontal pipe (in the x-z plane) bend as shown. The weight of the pipe is 350 N and the pipe cross-sectional area is constant and equals to 0.35 m^2. The magnitude of the inlet velocity is 4 m/s. The absolute pressures at the entrance and exit of the bend are 210 kPa and 110 kPa, respectively. Assuming the atmos
Water with density of 1000 kg/m^3 flows through a horizontal pipe (in the x-z plane) bend as shown. The weight of the pipe is 350 N and the pipe cross-sectional area is constant and equals to 0.35 m^2. The magnitude of the inlet velocity is 4 m/s. The absolute pressures at the entrance and exit of the bend are 210 kPa and 110 kPa, respectively. Assuming the atmos
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Topic Video
Question
Water with density of 1000 kg/m^3 flows through a horizontal pipe (in the x-z plane) bend as shown. The weight of the pipe is 350 N and the pipe cross-sectional area is constant and equals to 0.35 m^2. The magnitude of the inlet velocity is 4 m/s. The absolute pressures at the entrance and exit of the bend are 210 kPa and 110 kPa, respectively. Assuming the atmospheric pressure is 100 kPa and neglecting the weight and viscosity of the water , find the following:
A)The force (in the x-axis direction) acting on the fluid?
B)The force (in the z-axis direction) acting on the pipe?
C)The reaction force in the y direction ?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY