A water jet with volume flow rate of 3 m/s is moving in the positive x- direction at a speed of 6 m/s. The stream hits a stationary splitter, such that half of the flow is diverted upward at 45° and the other half is directed downward at 450, and both streams have a final average speed of 6 m/s. The gravitational effects and friction loss are considered to be negligible. Determine the x- and z-components of the force required to hold the splitter in place against the water force. Note that the pressure of the water jet at inlet and outlet sections is the atmospheric pressure and the density of water is taken as 1000 kg/m³.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Topic Video
Question
A water jet with volume flow rate of 3 m³/s is moving in the positive x-
direction at a speed of 6 m/s. The stream hits a stationary splitter, such
that half of the flow is diverted upward at 45º and the other half is
directed downward at 45°, and both streams have a final average speed of
6 m/s. The gravitational effects and friction loss are considered to be
negligible. Determine the x- and z-components of the force required to hold
the splitter in place against the water force. Note that the pressure of the
water jet at inlet and outlet sections is the atmospheric pressure and the
density of water is taken as 1000 kg/m³.
3 m³/s
6 m/s
45°
A
45°
Figure 3.1
2
FR:
FRX
Transcribed Image Text:A water jet with volume flow rate of 3 m³/s is moving in the positive x- direction at a speed of 6 m/s. The stream hits a stationary splitter, such that half of the flow is diverted upward at 45º and the other half is directed downward at 45°, and both streams have a final average speed of 6 m/s. The gravitational effects and friction loss are considered to be negligible. Determine the x- and z-components of the force required to hold the splitter in place against the water force. Note that the pressure of the water jet at inlet and outlet sections is the atmospheric pressure and the density of water is taken as 1000 kg/m³. 3 m³/s 6 m/s 45° A 45° Figure 3.1 2 FR: FRX
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Fluid Statics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY