A jet of water flows from left to right and hits a splitter block, as shown in the figure. Some of the jet is diverted upwards and some of it downwards. The incoming jet has a velocity U₁ = 2.3 m/s and a cross-sectional area A₁. The jet that is deflected upwards has a velocity U₂ = 0.7 m/s, a cross-sectional area A₂ = 11 cm² and is at an angle 0₂ = 30° with respect to the horizontal. The jet that is deflected downwards has a velocity U3 = 0.9 m/s, a cross-sectional area A3 = 8 cm² and is at an angle 83 = 25° with respect to the horizontal. The density of water is p = 1000 kg/m³.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A jet of water flows from left to right and hits a splitter block, as shown in the figure. Some of
the jet is diverted upwards and some of it downwards. The incoming jet has a velocity U₁ =
2.3 m/s and a cross-sectional area A₁
The jet that is deflected upwards has a velocity U₂ = 0.7 m/s, a cross-sectional area A₂ = 11
cm² and is at an angle 0₂ = 30° with respect to the horizontal.
The jet that is deflected downwards has a velocity U3 = 0.9 m/s, a cross-sectional area A3 =
8 cm² and is at an angle 03 = 25° with respect to the horizontal.
The density of water is p = 1000 kg/m³.
U₁
A₁
A₂z
A3
a)
Find the cross-sectional area of the incoming jet (in cm²)
U₂
0₂
0₂
b)
Find the horizontal force on the block (in Newtons)
(Note: remember to convert the area of the jets from cm² to m²!)
Из
c)
The vertical force on the block found to be F. What velocity of the incoming jet (i.e. what
value of u₁) would be needed t generate a force of 4F,?
(Note that you don't need to actually find F, to solve this question!)
Transcribed Image Text:A jet of water flows from left to right and hits a splitter block, as shown in the figure. Some of the jet is diverted upwards and some of it downwards. The incoming jet has a velocity U₁ = 2.3 m/s and a cross-sectional area A₁ The jet that is deflected upwards has a velocity U₂ = 0.7 m/s, a cross-sectional area A₂ = 11 cm² and is at an angle 0₂ = 30° with respect to the horizontal. The jet that is deflected downwards has a velocity U3 = 0.9 m/s, a cross-sectional area A3 = 8 cm² and is at an angle 03 = 25° with respect to the horizontal. The density of water is p = 1000 kg/m³. U₁ A₁ A₂z A3 a) Find the cross-sectional area of the incoming jet (in cm²) U₂ 0₂ 0₂ b) Find the horizontal force on the block (in Newtons) (Note: remember to convert the area of the jets from cm² to m²!) Из c) The vertical force on the block found to be F. What velocity of the incoming jet (i.e. what value of u₁) would be needed t generate a force of 4F,? (Note that you don't need to actually find F, to solve this question!)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 1 images

Blurred answer
Knowledge Booster
Fluid Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY