Water with density of 1000 kg/m^3 flows through a horizontal pipe (in the x-z plane) bend as shown. The weight of the pipe is 350 N and the pipe cross-sectional area is constant and equals to 0.35 m^2. The magnitude of the inlet velocity is 4 m/s. The absolute pressures at the entrance and exit of the bend are 210 kPa and 110 kPa, respectively. Assuming the atmospheric pressure is 100 kPa and neglecting the weight and viscosity of the water , find the following:

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Topic Video
Question
Water with density of 1000 kg/m^3 flows through a horizontal pipe (in the x-z plane) bend as shown. The weight of the
pipe is 350 N and the pipe cross-sectional area is constant and equals to 0.35 m^2. The magnitude of the inlet velocity is
Section (1)
4 m/s. The absolute pressures at the entrance and exit of the bend are 210 kPa and 110 kPa, respectively. Assuming the
atmospheric pressure is 100 kPa and neglecting the weight and viscosity of the water , find the following:
Control
volume
The mass flow rate is
180° pipe bend
Section (2)
The exit velocity is
The force (in the z-axis direction) acting on the fluid is
Transcribed Image Text:Water with density of 1000 kg/m^3 flows through a horizontal pipe (in the x-z plane) bend as shown. The weight of the pipe is 350 N and the pipe cross-sectional area is constant and equals to 0.35 m^2. The magnitude of the inlet velocity is Section (1) 4 m/s. The absolute pressures at the entrance and exit of the bend are 210 kPa and 110 kPa, respectively. Assuming the atmospheric pressure is 100 kPa and neglecting the weight and viscosity of the water , find the following: Control volume The mass flow rate is 180° pipe bend Section (2) The exit velocity is The force (in the z-axis direction) acting on the fluid is
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Fluid Statics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY