(a)
Interpretation:
Correct IUPAC name for the given ketone has to be assigned.
Concept Introduction:
For naming a ketone in
IUPAC rules for naming a ketone:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-one”.
- • Numbering is done in a way that the carbonyl group gets the least numbering. The position of the carbonyl group is indicated in the name.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • Cyclic
ketones are named by adding the suffix “-one” to the name of the carbon ring. The substituents are numbered so that it gets the least numbering starting from the carbonyl group that is given the number 1.
(b)
Interpretation:
Correct IUPAC name for the given ketone has to be assigned.
Concept Introduction:
For naming a ketone in IUPAC nomenclature, the suffix “-one” is added to the parent alkane name.
IUPAC rules for naming a ketone:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-one”.
- • Numbering is done in a way that the carbonyl group gets the least numbering. The position of the carbonyl group is indicated in the name.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • Cyclic ketones are named by adding the suffix “-one” to the name of the carbon ring. The substituents are numbered so that it gets the least numbering starting from the carbonyl group that is given the number 1.
(c)
Interpretation:
Correct IUPAC name for the given ketone has to be assigned.
Concept Introduction:
For naming a ketone in IUPAC nomenclature, the suffix “-one” is added to the parent alkane name.
IUPAC rules for naming a ketone:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-one”.
- • Numbering is done in a way that the carbonyl group gets the least numbering. The position of the carbonyl group is indicated in the name.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • Cyclic ketones are named by adding the suffix “-one” to the name of the carbon ring. The substituents are numbered so that it gets the least numbering starting from the carbonyl group that is given the number 1.
(d)
Interpretation:
Correct IUPAC name for the given ketone has to be assigned.
Concept Introduction:
For naming a ketone in IUPAC nomenclature, the suffix “-one” is added to the parent alkane name.
IUPAC rules for naming a ketone:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-one”.
- • Numbering is done in a way that the carbonyl group gets the least numbering. The position of the carbonyl group is indicated in the name.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • Cyclic ketones are named by adding the suffix “-one” to the name of the carbon ring. The substituents are numbered so that it gets the least numbering starting from the carbonyl group that is given the number 1.

Want to see the full answer?
Check out a sample textbook solution
Chapter 4 Solutions
EBK ORGANIC AND BIOLOGICAL CHEMISTRY
- Can the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? ? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C :0 T Add/Remove step Garrow_forwardThe following equations represent the formation of compound MX. What is the AH for the electron affinity of X (g)? X₂ (g) → 2X (g) M (s) → M (g) M (g) M (g) + e- AH = 60 kJ/mol AH = 22 kJ/mol X (g) + e-X (g) M* (g) +X (g) → MX (s) AH = 118 kJ/mol AH = ? AH = -190 kJ/mol AH = -100 kJ/mol a) -80 kJ b) -30 kJ c) -20 kJ d) 20 kJ e) 156 kJarrow_forwardA covalent bond is the result of the a) b) c) d) e) overlap of two half-filled s orbitals overlap of a half-filled s orbital and a half-filled p orbital overlap of two half-filled p orbitals along their axes parallel overlap of two half-filled parallel p orbitals all of the abovearrow_forward
- Can the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C T Add/Remove step X ноarrow_forwardWhich one of the following atoms should have the largest electron affinity? a) b) c) d) 으으 e) 1s² 2s² 2p6 3s¹ 1s² 2s² 2p5 1s² 2s² 2p 3s² 3p² 1s² 2s 2p 3s² 3p6 4s2 3ds 1s² 2s² 2p6arrow_forwardAll of the following are allowed energy levels except _. a) 3f b) 1s c) 3d d) 5p e) 6sarrow_forward
- A student wants to make the following product in good yield from a single transformation step, starting from benzene. Add any organic reagents the student is missing on the left-hand side of the arrow, and any addition reagents that are necessary above or below the arrow. If this product can't be made in good yield with a single transformation step, check the box below the drawing area. Note for advanced students: you may assume that an excess of benzene is used as part of the reaction conditions. : ☐ + I X This product can't be made in a single transformation step.arrow_forwardPredict the major products of this organic reaction:arrow_forwardCalculate the density of 21.12 g of an object that displaces 0.0250 L of water.arrow_forward
- Draw the expected reactant R28. Cu(II) CO₂Mearrow_forwardPpplllleeeaaasssseeee helllppp wiithhh thisss Organic chemistryyyyyy I talked like this because AI is very annoyingarrow_forwardName the family to which each organic compound belongs. The first answer has been filled in for you. compound CH₂ || CH3-C-NH2 0 ။ CH3-C-CH₂ CH=O–CH=CH, CH₂ HO CH2-CH2-CH-CH3 family amine Darrow_forward
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning


