(a)
Interpretation:
Correct IUPAC name for the given
Concept Introduction:
For naming an aldehyde in
IUPAC rules for naming an aldehyde:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-al”.
- • Numbering is done in a way that the carbonyl group is designated as number 1. This is not indicated in the part of the name because for aldehyde, the carbonyl carbon is always numbered 1.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • If the carbonyl
functional group is attached to a ring of carbon atoms, the ring is named and “-carbaldehyde” is added as suffix.
(b)
Interpretation:
Correct IUPAC name for the given aldehyde has to be assigned.
Concept Introduction:
For naming an aldehyde in IUPAC nomenclature, the suffix “-al” is added to the parent alkane name.
IUPAC rules for naming an aldehyde:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-al”.
- • Numbering is done in a way that the carbonyl group is designated as number 1. This is not indicated in the part of the name because for aldehyde, the carbonyl carbon is always numbered 1.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • If the carbonyl functional group is attached to a ring of carbon atoms, the ring is named and “-carbaldehyde” is added as suffix.
(c)
Interpretation:
Correct IUPAC name for the given aldehyde has to be assigned.
Concept Introduction:
For naming an aldehyde in IUPAC nomenclature, the suffix “-al” is added to the parent alkane name.
IUPAC rules for naming an aldehyde:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-al”.
- • Numbering is done in a way that the carbonyl group is designated as number 1. This is not indicated in the part of the name because for aldehyde, the carbonyl carbon is always numbered 1.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • If the carbonyl functional group is attached to a ring of carbon atoms, the ring is named and “-carbaldehyde” is added as suffix.
(d)
Interpretation:
Correct IUPAC name for the given aldehyde has to be assigned.
Concept Introduction:
For naming an aldehyde in IUPAC nomenclature, the suffix “-al” is added to the parent alkane name.
IUPAC rules for naming an aldehyde:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-al”.
- • Numbering is done in a way that the carbonyl group is designated as number 1. This is not indicated in the part of the name because for aldehyde, the carbonyl carbon is always numbered 1.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • If the carbonyl functional group is attached to a ring of carbon atoms, the ring is named and “-carbaldehyde” is added as suffix.
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
EBK ORGANIC AND BIOLOGICAL CHEMISTRY
- Please provide steps to work for complete understanding.arrow_forwardPlease provide steps to work for complete understanding.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forward
- Identify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forward
- A certain chemical reaction releases 24.7 kJ/g of heat for each gram of reactant consumed. How can you calculate what mass of reactant will produce 1460. J of heat? Set the math up. But don't do any of it. Just leave your answer as a math expression. Also, be sure your answer includes all the correct unit symbols. mass M 0.0 x μ 00 1 Garrow_forwardPlease don't used hand raiting and don't used Ai solutionarrow_forwardDon't used Ai solutionarrow_forward
- Don't used hand raitingarrow_forwarda) Propose a method to synthesize the following product. More than one step reaction is required. (10 marks)arrow_forwardthe vibrational frequency of I2 is 214.5 cm-1. (i) Using the harmonic oscillator model, evaluate the vibrational partition function and the mean vibrational energy of I2 at 1000K. (ii) What is the characteristic vibrational temperature of I2? (iii) At 1000K, assuming high-temperature approximation, evaluate the vibrational partition function and the mean vibrational energy of I2. (iv) Comparing (i) and (iii), is the high-temperature approximation good for I2 at 1000K?arrow_forward
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co