Concept explainers
(a)
Interpretation:
For the given ketone IUPAC name has to be assigned.
Concept Introduction:
For naming a ketone in
IUPAC rules for naming a ketone:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-one”.
- • Numbering is done in a way that the carbonyl group gets the least numbering. The position of the carbonyl group is indicated in the name.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • Cyclic
ketones are named by adding the suffix “-one” to the name of the carbon ring. The substituents are numbered so that it gets the least numbering starting from the carbonyl group that is given the number 1.
In a line-angle structural formula, carbon atom is present in the point where the lines intersect and the end point.
(b)
Interpretation:
For the given ketone IUPAC name has to be assigned.
Concept Introduction:
For naming a ketone in IUPAC nomenclature, the suffix “-one” is added to the parent alkane name.
IUPAC rules for naming a ketone:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-one”.
- • Numbering is done in a way that the carbonyl group gets the least numbering. The position of the carbonyl group is indicated in the name.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • Cyclic ketones are named by adding the suffix “-one” to the name of the carbon ring. The substituents are numbered so that it gets the least numbering starting from the carbonyl group that is given the number 1.
In a line-angle structural formula, carbon atom is present in the point where the lines intersect and the end point.
(c)
Interpretation:
For the given ketone IUPAC name has to be assigned.
Concept Introduction:
For naming a ketone in IUPAC nomenclature, the suffix “-one” is added to the parent alkane name.
IUPAC rules for naming a ketone:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-one”.
- • Numbering is done in a way that the carbonyl group gets the least numbering. The position of the carbonyl group is indicated in the name.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • Cyclic ketones are named by adding the suffix “-one” to the name of the carbon ring. The substituents are numbered so that it gets the least numbering starting from the carbonyl group that is given the number 1.
In a line-angle structural formula, carbon atom is present in the point where the lines intersect and the end point.
(d)
Interpretation:
For the given ketone IUPAC name has to be assigned.
Concept Introduction:
For naming a ketone in IUPAC nomenclature, the suffix “-one” is added to the parent alkane name.
IUPAC rules for naming a ketone:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-one”.
- • Numbering is done in a way that the carbonyl group gets the least numbering. The position of the carbonyl group is indicated in the name.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • Cyclic ketones are named by adding the suffix “-one” to the name of the carbon ring. The substituents are numbered so that it gets the least numbering starting from the carbonyl group that is given the number 1.
In a line-angle structural formula, carbon atom is present in the point where the lines intersect and the end point.

Want to see the full answer?
Check out a sample textbook solution
Chapter 4 Solutions
EBK ORGANIC AND BIOLOGICAL CHEMISTRY
- Using wedge-and-dash bonds, modify the bonds on the chiral carbon in the molecule below so the molecule has R stereochemical configuration. NH H Br X टेarrow_forwardProvide photos of models of the following molecules. (Include a key for identification of the atoms) 1,2-dichloropropane 2,3,3-trimethylhexane 2-bromo-3-methybutanearrow_forwardPlease draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forward
- A 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardFirefly luciferin exhibits three rings. Identify which of the rings are aromatic. Identify which lone pairs are involved in establishing aromaticity. The lone pairs are labeled A-D below.arrow_forwardA 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forward
- Given a complex reaction with rate equation v = k1[A] + k2[A]2, what is the overall reaction order?arrow_forwardPlease draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forwardCHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the steady-state approximation method. Explain what it consists of.arrow_forward
- CHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the limiting or determining step approximation method. Explain what it consists of.arrow_forwardCHEMICAL KINETICS. Indicate the approximation methods for solving the rate equation.arrow_forwardTRANSMITTANCE เบบ Please identify the one structure below that is consistent with the 'H NMR and IR spectra shown and draw its complete structure in the box below with the protons alphabetically labeled as shown in the NMR spectrum and label the IR bands, including sp³C-H and sp2C-H stretch, indicated by the arrows. D 4000 OH LOH H₂C CH3 OH H₂C OCH3 CH3 OH 3000 2000 1500 HAVENUMBERI-11 1000 LOCH3 Draw your structure below and label its equivalent protons according to the peak labeling that is used in the NMR spectrum in order to assign the peaks. Integrals indicate number of equivalent protons. Splitting patterns are: s=singlet, d=doublet, m-multiplet 8 3Hb s m 1Hd s 3Hf m 2Hcd 2Had 1He 鄙视 m 7 7 6 5 4 3 22 500 T 1 0arrow_forward
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning



