Concept explainers
(a)
Interpretation: The three-dimensional shape and Lewis structure of should be determined
Concept Introduction:
- VSEPR theory: This theory was developed to predict the shapes of covalent molecules in which atoms are joined together with single covalent bond. According to this theory
- The electron pairs around the central atom in a molecule tend to stay in space as far as possible so that repulsive forces between electron pairs are minimum
- The geometry or shape of the molecule is determined by the orientation of electron pairs.
- The shape of the molecule is regular if the electron pairs around the central atom are shared pairs only because they exert repulsive forces equally
- The shape are irregular if they have shared as well as lone pair around the central atom because they exert repulsive forces unequally.
- Lewis dot structure: The structure which shows the distribution valance electrons of all the atoms involved in bonding. This includes bonding electrons as well as lone pair of electrons.
(b)
Interpretation: The three-dimensional structure and Lewis dot structure of should be determined.
Concept Introduction:
- VSEPR theory: This theory was developed to predict the shapes of covalent molecules in which atoms are joined together with single covalent bond. According to this theory
- The electron pairs around the central atom in a molecule tend to stay in space as far as possible so that repulsive forces between electron pairs are minimum
- The geometry or shape of the molecule is determined by the orientation of electron pairs.
- The shape of the molecule is regular if the electron pairs around the central atom are shared pairs only because they exert repulsive forces equally
- The shape are irregular if they have shared as well as lone pair around the central atom because they exert repulsive forces unequally.
- Lewis dot structure: The structure which shows the distribution valance electrons of all the atoms involved in bonding. This includes bonding electrons as well as lone pair of electrons.
(c)
Interpretation: The three-dimensional shape and Lewis structure of should be determined
Concept Introduction:
- VSEPR theory: This theory was developed to predict the shapes of covalent molecules in which atoms are joined together with single covalent bond. According to this theory
- The electron pairs around the central atom in a molecule tend to stay in space as far as possible so that repulsive forces between electron pairs are minimum
- The geometry or shape of the molecule is determined by the orientation of electron pairs.
- The shape of the molecule is regular if the electron pairs around the central atom are shared pairs only because they exert repulsive forces equally
- The shape are irregular if they have shared as well as lone pair around the central atom because they exert repulsive forces unequally.
align="center"Lewis dot structure: The structure which shows the distribution valance electrons of all the atoms involved in bonding. This includes bonding electrons as well as lone pair of electrons.
(d)
Interpretation: The three-dimensional shape and Lewis dot structure of should be determined
Concept Introduction:
- VSEPR theory: This theory was developed to predict the shapes of covalent molecules in which atoms are joined together with single covalent bond. According to this theory
- The electron pairs around the central atom in a molecule tend to stay in space as far as possible so that repulsive forces between electron pairs are minimum
- The geometry or shape of the molecule is determined by the orientation of electron pairs.
- The shape of the molecule is regular if the electron pairs around the central atom are shared pairs only because they exert repulsive forces equally
- The shape are irregular if they have shared as well as lone pair around the central atom because they exert repulsive forces unequally.
- Lewis dot structure: The structure which shows the distribution valance electrons of all the atoms involved in bonding. This includes bonding electrons as well as lone pair of electrons.
(e)
Interpretation: The three-dimensional shape and Lewis dot structure of should be determined
Concept Introduction:
- VSEPR theory: This theory was developed to predict the shapes of covalent molecules in which atoms are joined together with single covalent bond. According to this theory
- The electron pairs around the central atom in a molecule tend to stay in space as far as possible so that repulsive forces between electron pairs are minimum
- The geometry or shape of the molecule is determined by the orientation of electron pairs.
- The shape of the molecule is regular if the electron pairs around the central atom are shared pairs only because they exert repulsive forces equally
- The shape are irregular if they have shared as well as lone pair around the central atom because they exert repulsive forces unequally.
- Lewis dot structure: The structure which shows the distribution valance electrons of all the atoms involved in bonding. This includes bonding electrons as well as lone pair of electrons.
(f)
Interpretation: The three-dimensional structure and Lewis dot structure of should be determined.
Concept Introduction:
- VSEPR theory: This theory was developed to predict the shapes of covalent molecules in which atoms are joined together with single covalent bond. According to this theory
- The electron pairs around the central atom in a molecule tend to stay in space as far as possible so that repulsive forces between electron pairs are minimum
- The geometry or shape of the molecule is determined by the orientation of electron pairs.
- The shape of the molecule is regular if the electron pairs around the central atom are shared pairs only because they exert repulsive forces equally
- The shape are irregular if they have shared as well as lone pair around the central atom because they exert repulsive forces unequally.
- Lewis dot structure: The structure which shows the distribution valance electrons of all the atoms involved in bonding. This includes bonding electrons as well as lone pair of electrons.
(g)
Interpretation: The three-dimensional structure and Lewis dot structure of should be determined.
Concept Introduction:
- VSEPR theory: This theory was developed to predict the shapes of covalent molecules in which atoms are joined together with single covalent bond. According to this theory
- The electron pairs around the central atom in a molecule tend to stay in space as far as possible so that repulsive forces between electron pairs are minimum
- The geometry or shape of the molecule is determined by the orientation of electron pairs.
- The shape of the molecule is regular if the electron pairs around the central atom are shared pairs only because they exert repulsive forces equally
- The shape are irregular if they have shared as well as lone pair around the central atom because they exert repulsive forces unequally.
- Lewis dot structure: The structure which shows the distribution valance electrons of all the atoms involved in bonding. This includes bonding electrons as well as lone pair of electrons.
(1)
Interpretation: Theand does not have linear structure should be explained
Concept Introduction:
- VSEPR theory: This theory was developed to predict the shapes of covalent molecules in which atoms are joined together with single covalent bond. According to this theory
- The electron pairs around the central atom in a molecule tend to stay in space as far as possible so that repulsive forces between electron pairs are minimum
- The geometry or shape of the molecule is determined by the orientation of electron pairs.
- The shape of the molecule is regular if the electron pairs around the central atom are shared pairs only because they exert repulsive forces equally
- The shape are irregular if they have shared as well as lone pair around the central atom because they exert repulsive forces unequally.
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Chemistry For Changing Times (14th Edition)
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY