Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35.3, Problem 35.3GI
To determine
Comparison of ground state energies of electrons A and B.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the probability that an electron in the 1s orbital will be within a 1.50 Å radius?
?1? = (1/ (?1/2 a03/2)) e-r/a0 and ∫ x2 ebx dx= ebx (x2/b - 2x/b2 + 2/b3 )
So Determine the distance between the electron and proton in an atom if the potential energy ?U of the electron is 15.4 eV (electronvolt, 1 eV =1.6×10−19=1.6×10−19 J). Give your answer in Angstrom (1 A = 10-10 m)
An electron is in an infinite square well of width 2.0 nm. What is the wavelength of the emitted photon in nanometers as the electron transitions from the n=8 to the n=4 state? (h = 6.626 × 10-34 J ∙ s, mel = 9.11 × 10-31 kg, 1 eV = 1.60 × 10-19J). Please give your answer with no decimal places.
Chapter 35 Solutions
Essential University Physics (3rd Edition)
Ch. 35.1 - Prob. 35.1GICh. 35.2 - Prob. 35.2GICh. 35.3 - Prob. 35.3GICh. 35.3 - Prob. 35.4GICh. 35.3 - Prob. 35.5GICh. 35.4 - Prob. 35.6GICh. 35 - Prob. 1FTDCh. 35 - Prob. 2FTDCh. 35 - Prob. 3FTDCh. 35 - Prob. 4FTD
Ch. 35 - Prob. 5FTDCh. 35 - Prob. 6FTDCh. 35 - Prob. 7FTDCh. 35 - What did Einstein mean by his re maxi, loosely...Ch. 35 - Prob. 9FTDCh. 35 - Prob. 10FTDCh. 35 - Prob. 12ECh. 35 - Prob. 13ECh. 35 - Prob. 14ECh. 35 - Prob. 15ECh. 35 - Prob. 16ECh. 35 - Prob. 17ECh. 35 - Prob. 18ECh. 35 - Prob. 19ECh. 35 - Prob. 20ECh. 35 - Prob. 21ECh. 35 - Prob. 22ECh. 35 - Prob. 23ECh. 35 - Prob. 24ECh. 35 - Prob. 25ECh. 35 - Prob. 26ECh. 35 - Prob. 27ECh. 35 - Prob. 28ECh. 35 - Prob. 29ECh. 35 - Prob. 30ECh. 35 - Prob. 31ECh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - Prob. 34PCh. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 38PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Prob. 45PCh. 35 - Prob. 46PCh. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51PCh. 35 - Prob. 52PCh. 35 - Prob. 53PCh. 35 - Prob. 54PCh. 35 - Prob. 55PCh. 35 - Prob. 56PCh. 35 - Prob. 57PCh. 35 - Prob. 58PCh. 35 - Prob. 59PCh. 35 - Prob. 60PCh. 35 - Prob. 61PPCh. 35 - Prob. 62PPCh. 35 - Prob. 63PPCh. 35 - Prob. 64PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electron is in the nth Bohr orbit of the hydrogen atom. n3 (a) Show that the period of the electron is T = to n³ and determine the numerical value of to. 153 as (b) On average, an electron remains in the n = 2 orbit for approximately 8 us before it jumps down to the n = 1 (ground-state)orbit. How many revolutions does the electron make in the excited state? 8.26e+09 × (c) Define the period of one revolution as an electron year, analogous to an Earth year being the period of the Earth's motion around the Sun. Explain whether we should think of the electron in the n = 2 orbit as "living for a long time."arrow_forwardWhat is the lowest energy level, in electronvolts (eV), of an electron in a one-dimensional atom size box, 0.327 nm in width? lowest energy level: 3.54 Find the lowest energy level, in units of a million electronvolts (MeV), of a proton in a one-dimensional nucleus size box, 1.21 x 10-14 m in width? lowest energy level: Incorrect eV MeVarrow_forwardAn electron is confined to a one-dimensional region in which its ground-state (n = 1) energy is 1.45 eV. (a) What is the length L of the region? nm(b) What energy input is required to promote the electron to its first excited state? eVarrow_forward
- A hydrogen atom in an excited state absorbs a photon of wavelength 410 nm. What were the initial and fi nal states of the hydrogen atom?arrow_forward具 Hydrogen has a ground state energy of Eo = -13.6 eV. A helium atom (Z = 2) with only one electron will have a ground state energy of Selected answer will be automatically saved. For keyboard navigation, press up/down arrow keys to select an answer. Question 7 a E0/4. b C e Eo/2. Eo- d 25/3. 4E0/9.arrow_forwardA hydrogen atom exists in an excited state for typically 10^-8 s. How many revolutions would an electron make in an n =3 state before decaying?arrow_forward
- An electron is trapped in a one-dimensional region of length 1.00 x 10-10 m (a typical atomic diameter). (a) Find the energies of the ground state and first two excited states. (b) How much energy must be supplied to excite the electron from the ground state to the sec- ond excited state? (c) From the second excited state, the electron drops down to the first excited state. How much energy is released in this process?arrow_forwardIt is possible that a muon be captured by a proton to form a muonic atom. A muon is identic to an electron, except when your mass, which is m = 105.7 MeV/c^2. What ia the smallest wave length for a Lyman series for this atom? Give your answer in pm.arrow_forwardAn electron was trapped in a square well 1.43 [nm] across and 6E₁-w high. If the electron transitioned from the second excited state to the first excited state, what is the wavelength of the photon emitted? Note that for U₁ = 6E₁-IDW State (n) 1 2 3 Finite Square Well 0.625E1-IDW 2.43E1-IDW 5.09 E1-IDWarrow_forward
- What is the average radius of the orbit of an electron in the n=2 energy level of an oxygen atom (Z=8)? Express your answer in pico-meters.arrow_forwardWhat is the minimum energy needed to ionize a hydrogen atom that is in the n = 2 state (in eV)?arrow_forwardAn electron is contained in the rectangular box , with widths Lx = 800 pm, Ly =1600 pm, and Lz= 390 pm.What is the electron’s ground-state energy?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning