Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 15E
To determine
The quantum number for a particle in an infinite square well if the particle’s energy is 25 times the ground-state energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A relatively long-lived excited state of an atom has a lifetime of 3.00 ms. What is the minimum uncertainty in its energy?
An electron in a one-dimensional infinite potential well of length L has ground-state energy E1.The length is changed to L' so that the new ground-state energy is E'1 = 0.500E1 .What is the ratio L'/L?
An electron confined to a box has the ground state energy of 2.4 eV.
What is the width of the box in units of nanometers?
Chapter 35 Solutions
Essential University Physics (3rd Edition)
Ch. 35.1 - Prob. 35.1GICh. 35.2 - Prob. 35.2GICh. 35.3 - Prob. 35.3GICh. 35.3 - Prob. 35.4GICh. 35.3 - Prob. 35.5GICh. 35.4 - Prob. 35.6GICh. 35 - Prob. 1FTDCh. 35 - Prob. 2FTDCh. 35 - Prob. 3FTDCh. 35 - Prob. 4FTD
Ch. 35 - Prob. 5FTDCh. 35 - Prob. 6FTDCh. 35 - Prob. 7FTDCh. 35 - What did Einstein mean by his re maxi, loosely...Ch. 35 - Prob. 9FTDCh. 35 - Prob. 10FTDCh. 35 - Prob. 12ECh. 35 - Prob. 13ECh. 35 - Prob. 14ECh. 35 - Prob. 15ECh. 35 - Prob. 16ECh. 35 - Prob. 17ECh. 35 - Prob. 18ECh. 35 - Prob. 19ECh. 35 - Prob. 20ECh. 35 - Prob. 21ECh. 35 - Prob. 22ECh. 35 - Prob. 23ECh. 35 - Prob. 24ECh. 35 - Prob. 25ECh. 35 - Prob. 26ECh. 35 - Prob. 27ECh. 35 - Prob. 28ECh. 35 - Prob. 29ECh. 35 - Prob. 30ECh. 35 - Prob. 31ECh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - Prob. 34PCh. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 38PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Prob. 45PCh. 35 - Prob. 46PCh. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51PCh. 35 - Prob. 52PCh. 35 - Prob. 53PCh. 35 - Prob. 54PCh. 35 - Prob. 55PCh. 35 - Prob. 56PCh. 35 - Prob. 57PCh. 35 - Prob. 58PCh. 35 - Prob. 59PCh. 35 - Prob. 60PCh. 35 - Prob. 61PPCh. 35 - Prob. 62PPCh. 35 - Prob. 63PPCh. 35 - Prob. 64PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the energy of the first excited state of the electron in the box is 25.0 eV, what is the width of the box?arrow_forwardIs it possible to measure energy of 0.75h for a quantum harmonic oscillator? Why? Why not? Explain.arrow_forwardWhat is the ground state energy (in eV) of an a -particle confined to a one-dimensional box the size of the uranium nucleus that has a radius of approximately 15.0 fm?arrow_forward
- What is the ground state energy (in eV) of a proton confined to a one-dimensional box the size of the uranium nucleus that has a radius of approximately 15.0 fm?arrow_forwardPhysics What is the energy of a photon that could cause an electron to transition from the ground state to the n = 6 energy level in an infinite well of width L = 2nm ?arrow_forwardA particle of mass m is moving in an infinite 1D quantum well of width L. y,(x) = J? sinx. sin nAx L (a) How much energy must be given to the particle so it can transition from the ground state to the second excited state? (b) If the particle is in the first excited state, what is the probability of finding the particle between x = and x = ;? 2.arrow_forward
- a.Draw the wave function for a particle in a box at the n-3 energy level. b.Draw the probability distribution for a particle in a box at the n-3 energy level. c.A nanoparticle with mass equal to 15 x 10-27 g exists in a 10 nm one-dimensional box. What is the wavelength of radiation emitted when it decays from the n-3 level to the n- 2 level? For a 1 nm box?arrow_forwardAn electron is trapped in an infinite potential well of width 1 cm. For what value of n will the electron have an energy of 2 eV? O a.~1011 Ob. ~10⁹ O C. ~107 O d. ~105arrow_forwardYou have an electron confined in a one-dimensional box and measure its 4th-level energy to be 18.10 eV. What is the width of the box in nanometers? width: nmarrow_forward
- Please see attached question.arrow_forwardIt can be shown that the allowed energies of a particle of mass m in a two-dimensional square box of sided L are Enl =h2/8mL2 (n2 + l2)The energy depends on two quantum numbers, n and l, both of which must have an integer value 1, 2, 3,........a. What is the minimum energy for a particle in a twodimensional square box of side L?b. What are the five lowest allowed energies? Give your values as multiples of Emin .arrow_forwardA particle of mass m is confined to a 3-dimensional box that has sides Lx,=L Ly=2L, and Lz=3L. a) Determine the sets of quantum numbers n_x, n_y, and n_z that correspond to the lowest 10 energy levels of this box.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning