Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 35, Problem 26E
To determine
The classical oscillation frequency.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle with mass m is in the state
тс
V (x,t) = Ae
+iat
2h
where A and a are positive real constants.
Calculate the potential energy function that satisfies the Schrodinger equation.
A quantum system has a ground state with energy E0 = 0 meV and a 7-fold degenerate excited state with energy E1 = 78 meV. Calculate the probability of finding the system in its ground state when it is at T = 300 K.
V7
Chapter 35 Solutions
Essential University Physics (3rd Edition)
Ch. 35.1 - Prob. 35.1GICh. 35.2 - Prob. 35.2GICh. 35.3 - Prob. 35.3GICh. 35.3 - Prob. 35.4GICh. 35.3 - Prob. 35.5GICh. 35.4 - Prob. 35.6GICh. 35 - Prob. 1FTDCh. 35 - Prob. 2FTDCh. 35 - Prob. 3FTDCh. 35 - Prob. 4FTD
Ch. 35 - Prob. 5FTDCh. 35 - Prob. 6FTDCh. 35 - Prob. 7FTDCh. 35 - What did Einstein mean by his re maxi, loosely...Ch. 35 - Prob. 9FTDCh. 35 - Prob. 10FTDCh. 35 - Prob. 12ECh. 35 - Prob. 13ECh. 35 - Prob. 14ECh. 35 - Prob. 15ECh. 35 - Prob. 16ECh. 35 - Prob. 17ECh. 35 - Prob. 18ECh. 35 - Prob. 19ECh. 35 - Prob. 20ECh. 35 - Prob. 21ECh. 35 - Prob. 22ECh. 35 - Prob. 23ECh. 35 - Prob. 24ECh. 35 - Prob. 25ECh. 35 - Prob. 26ECh. 35 - Prob. 27ECh. 35 - Prob. 28ECh. 35 - Prob. 29ECh. 35 - Prob. 30ECh. 35 - Prob. 31ECh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - Prob. 34PCh. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 38PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Prob. 45PCh. 35 - Prob. 46PCh. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51PCh. 35 - Prob. 52PCh. 35 - Prob. 53PCh. 35 - Prob. 54PCh. 35 - Prob. 55PCh. 35 - Prob. 56PCh. 35 - Prob. 57PCh. 35 - Prob. 58PCh. 35 - Prob. 59PCh. 35 - Prob. 60PCh. 35 - Prob. 61PPCh. 35 - Prob. 62PPCh. 35 - Prob. 63PPCh. 35 - Prob. 64PP
Knowledge Booster
Similar questions
- If the ground state energy of a simple harmonic oscillator is 1.25 eV, what is the frequency of its motion?arrow_forwardFind the energy of plane wave function exp i (kx-wt)arrow_forwardLike a harmonic oscillator with a force constant of 1550 N/m of the nitrogen oxide molecule suppose you behave. The energy of the second excited vibrating state (in eV) Find.arrow_forward
- (2nx sin \1.50. 2nz Consider the case of a 3-dimensional particle-in-a-box. Given: 4 = sin(ny) sin 2.00. What is the energy of the system? O 6h?/8m O 4h²/8m O 3h2/8m O none are correctarrow_forwardA wave function of a particle is Ψ(x)= Ae-bx for x>0 and Ψ(x)=Aebx for x<0. Find the corresponding potential energy and eigenvalue.arrow_forwardA harmonic oscillator of mass m and angular frequency w is in the initial state of wavefunction Y(x, 0) = Ai¢o(x) + 2Ai¢2(x) 3. a. Obtain the constant A b. Write the function Þ(x, t) c. Calculate the uncertainties Ax and Ap in the state of wavefunction (x, t) and show that the Heisenberg uncertainty principle is satisfiedarrow_forward
- Solid metals can be modeled as a set of uncoupled harmonic oscillators of the same frequency with energy levels given by En = ħwn n = 0, 1, 2,... where the zero-point energy (the lowest energy state) of each oscillator has been adjusted to zero for simplicity. In this model, the harmonic oscillators represent the motions of the metal atoms relative to one another. The frequency of these oscillators is low so that ħw = = 224 KB and the system vibrational partition function is given by 3N Z ² = la₁ - (1 1 e-0/T). (a) If the system contains one mole of atoms, find the average energy (in J) of this system at T= 172 K. (You can use = BkB.) T (b) What is the absolute entropy (in J/K) for this system? You can use either the Gibbs expression for S, or the system partition function to make this evaluation (they are equivalent, as your reading assignment indicates).arrow_forwardUse the time-dependent Schroedinger equation to calculate the period (in seconds) of the wavefunction for a particle of mass 9.109×10−31 kg in the ground state of a box of width 1.2×10−10 m.arrow_forwardThe wave function of a particle is psi(x)=Ae-bx for x>0 and psi(x)=Aebx for x<0. Find the corresponding potential energy and energy eigenvalue.arrow_forward
- An electron has total energy 6.29 eV. The particle initially travels in a region with constant potential energy 0.61 eV, before encountering a step to a new constant potential energy of 4.03 eV. What is the probability (in %) that the electron will be transmitted over the potential step?arrow_forwardThe classical turning points of a harmonic oscillator occur at the displacements at which all of the energy is potential energy; that is, when Ev = 1/2kfxtp2. For a particle of mass mu undergoing harmonic motion with force constant kf = 1000 N m−1, calculate the energy of the state with v = 0 and hence find the separation between the classical turning points. Repeat the calculation for an oscillator with kf = 100 N m−1.arrow_forwardThe creation of elements in the early universe and in stars involves protons tunneling through nuclei. Find the probability of the proton tunneling through 12C when the temperature of the star containing the proton and carbon is 12,000 Karrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning