Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 20E
To determine
How big would
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Imagine an alternate universe where the value of the Planck constant is 6.62607 x 10 "J-s.
In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wave properties? Which
objects would act like everyday objects, and be adequately described by classical mechanics?
object
quantum or classical?
classical
A raindrop with a mass of 2.0 mg, 6.7 mm wide, moving
at 6.9 m/s.
O quantum
O classical
A turtle with a mass of 530. g, 27. cm long, moving at 2.2
cm/s.
O quantum
O classical
A buckyball with a mass of 1.2 x 1021 g, 0.7 nm wide,
moving at 38. m/s.
O quantum
O classical
A human with a mass of 86. kg, 2.5 m high, moving at
3.0 m/s.
O quantum
Imagine an alternate universe where the value of the Planck constant is 6.62607 x 10
36
J-s.
In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wave properties? Which
objects would act like everyday objects, and be adequately described by classical mechanics?
object
quantum or classical?
classical
A raindrop with a mass of 2.0 mg, 6.7 mm wide, moving
at 6.9 m/s.
quantum
A turtle with a mass of 530. g, 27. cm long, moving at 2.2
classical
cm/s.
quantum
classical
A buckyball with a mass of 1.2 x 1021 g, 0.7 nm wide,
moving at 38. m/s.
quantum
classical
A human with a mass of 86. kg, 2.5 m high, moving at
3.0 m/s.
quantum
Imagine an alternate universe where the value of the Planck constant is
×6.62607·10−36Js
.
In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wave properties? Which objects would act like everyday objects, and be adequately described by classical mechanics?
object
quantum or classical?
A turtle with a mass of 560. g, 29. cm long, moving at 2.4 cm/s.
classical
quantum
An iceberg with a mass of 3.8 x 108 kg, 80. m wide, moving at 0.75 km/h.
classical
quantum
A mosquito with a mass of 1.2 mg, 11.4 mm long, moving at 2.5 m/s.
quantum
classical
A buckyball with a mass of 1.2 x 10-21 g, 0.7 nm wide, moving at 40. m/s.
classical
quantum
Chapter 35 Solutions
Essential University Physics (3rd Edition)
Ch. 35.1 - Prob. 35.1GICh. 35.2 - Prob. 35.2GICh. 35.3 - Prob. 35.3GICh. 35.3 - Prob. 35.4GICh. 35.3 - Prob. 35.5GICh. 35.4 - Prob. 35.6GICh. 35 - Prob. 1FTDCh. 35 - Prob. 2FTDCh. 35 - Prob. 3FTDCh. 35 - Prob. 4FTD
Ch. 35 - Prob. 5FTDCh. 35 - Prob. 6FTDCh. 35 - Prob. 7FTDCh. 35 - What did Einstein mean by his re maxi, loosely...Ch. 35 - Prob. 9FTDCh. 35 - Prob. 10FTDCh. 35 - Prob. 12ECh. 35 - Prob. 13ECh. 35 - Prob. 14ECh. 35 - Prob. 15ECh. 35 - Prob. 16ECh. 35 - Prob. 17ECh. 35 - Prob. 18ECh. 35 - Prob. 19ECh. 35 - Prob. 20ECh. 35 - Prob. 21ECh. 35 - Prob. 22ECh. 35 - Prob. 23ECh. 35 - Prob. 24ECh. 35 - Prob. 25ECh. 35 - Prob. 26ECh. 35 - Prob. 27ECh. 35 - Prob. 28ECh. 35 - Prob. 29ECh. 35 - Prob. 30ECh. 35 - Prob. 31ECh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - Prob. 34PCh. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 38PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Prob. 45PCh. 35 - Prob. 46PCh. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51PCh. 35 - Prob. 52PCh. 35 - Prob. 53PCh. 35 - Prob. 54PCh. 35 - Prob. 55PCh. 35 - Prob. 56PCh. 35 - Prob. 57PCh. 35 - Prob. 58PCh. 35 - Prob. 59PCh. 35 - Prob. 60PCh. 35 - Prob. 61PPCh. 35 - Prob. 62PPCh. 35 - Prob. 63PPCh. 35 - Prob. 64PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A dust particle of 1.0 μm diameter and 10−15 kg mass is confined within a narrow box of 10.0 μm length. Planck’s constant is 6.626 × 10−34 J ∙ s. What is the range of possible velocities for this particle? What is the range of possible velocities for an electron confined to a region roughly the size of a hydrogen atom?arrow_forward4. In Section 1.3 we used dimensional analysis to show that the size of a hydrogen atom can be understood by assuming that the electron in the atom is wave-like and non-relativistic. In this problem we show that, if we assume the electron in the atom is a classical electron described by the theory of relativity, dimensional analysis gives an atomic size which is four orders of magnitude too small. Consider a relativistic, classical theory of an electron moving in the Coulomb potential of a proton. Such a theory only involves three physical constants: m, /4mc9, and e, the maximum velocity in relativity. Show that it is possible to construct a length from these three physical constants, but show that it too small to characterize the size of the atom.arrow_forwardDetermine lm , the wavelength at the peak of the Planck distribution, and the corresponding frequency ƒ, at these temperatures: (a) 3.00 K; (b) 300 K; (c) 3000 K.arrow_forward
- : In class we did a problem where we saw that Planck’s law, which is given byI(λ, T) = 2πhc2λ5(ehc/λkbT − 1),at high wavelengths reduces to the classical predictionI(λ, T) = 2πckBTλ4.We did this by using the MacLaurin series for an exponential.1 + x +x22! +x33! +x44! + ...When we did this problem in class, we reasoned that,when the wavelength (λ) is large, the term hc/λkbTis small enough that any term (hc/λkbT)2 or (hc/λkbT)3 or any higher power is neglible. That’s how weshowed that, in the limit of large λ, Planck’s law reduces to the classical prediction. Now assume that wewant to make a slightly better approximation. We still assume that λ is large and therefore (hc/λkbT)3 and(hc/λkbT)4 and all higher powers are negligible, but now we want to work at the level of precision where(hc/λkbT)2is not negligible. What does Planck’s law reduce to in this case?arrow_forwardDetermine the maximum of the Planck distribution (for the three dimensional case) as a function of the frequency and the wavelength. Show that this is possible if we maximize the function x"/(e – 1) for a = 3 and a 5 respectively. This means solving the equation x = a(1 - e-*), which can be done in an iterative way Xp = a(1 -en-1), starting from x1 = 1 (stop after 5 iterations). Verify Wien law, Amar T =const., and comment on the fact that we find two different constants in the two approaches. We know that the sun produces the largest amount of radiation around the wave- length 5 x 10-5 cm. Using the results previously obtained, determine: • the temperature of the sun; • the amount of energy produced, knowing that the main mechanism of produc- tion of such energy is the transformation of hydrogen into helium, and that this reaction stops when 10% of the hydrogen has been converted. A good approxi- mation is to take the whole mass of the hydrogen equal to the mass of the sun (use…arrow_forwardIn a photoelectric experiment it is found that a stopping potential of 1.00 V is needed to stop all the electrons when incident light of wavelength 225 nm is used and 1.5 V is needed for light of wavelength 207 nm. From these data determine Planck's constant. (Enter your answer, in eV s, to at least four significant figures.) 4.2367e-15 X ev s From these data determine the work function (in eV) of the metal. 4.6 X evarrow_forward
- The energy density distribution function in terms of frequency for blackbody radiation is described by the formula Planck derived, given as: p(v,T) = c3 exp(hu/kT)-1 Specify what each of the parameters or variables (i.e. {h, c, k, v,T}) are called in this equation. You may have to look this up, since we did not cover this in the lectures or book. What is the dimension of h? Sketch what this distribution function looks like as a function of v. You can do this with information given.arrow_forward.5. Imagine a universe in which you have a de Broglie wavelength of 1 meter. In your everyday life, you would then be susceptible to experience considerable wave-like phenomena, such as diffraction and interference. Estimate the speed you would need to have in order to acquire this wavelength. Also, compute how long it would take you to move through 0.8 meter (i.e., about one step) with this speed.arrow_forwardImagine playing baseball in a universe (not ours!) where the Planck constant is 0.60 J s and thus quantum physics affects macroscopic objects. What would be the uncertainty in the position of a 0.50 kg baseball that is moving at 20 m/s along an axis if the uncertainty in the speed is 1.0 m/s?arrow_forward
- A two-state quantum system has energy eigenvalues te corresponding to normalised [w. +w_] states y. At time t = 0 the system is in the quantum state Find the 10000 x + h probability that the system will be in the same state at time t= (6€) where h is the Planck's constant.arrow_forwardThe Stanford Linear Accelerator accelerated electrons to an energy of 50 GeV. What is the de Broglie wavelength of these electrons? What fraction of a proton’s diameter (d ≈ 2 x 10-15 m) can such a particle probe?arrow_forwardI need the answer as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill