Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 35, Problem 22E
To determine
The approximate quantum number and whether the correspondence principle permits the use of the classical approximation in this case.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a macroscopic object of mass 90 grams confined to move between two rigid walls separated by 2 m. What is the minimum speed of the object? What should the quantum number n be if the object is moving with a speed 1 ms-1? What is the separation of the energy levels of the object moving with that speed?
An electron (m = 9.109*10^-31 kg) is confined in a one-dimensional infinite square well of width L = 10 nm.
define uncertainity in momentum
Find the first four quantized energy levels for a proton constrained to move on the surface of a sphere of radius 0.20 nm. Can this system exist ?
Please type the answer step by step .
Chapter 35 Solutions
Essential University Physics (3rd Edition)
Ch. 35.1 - Prob. 35.1GICh. 35.2 - Prob. 35.2GICh. 35.3 - Prob. 35.3GICh. 35.3 - Prob. 35.4GICh. 35.3 - Prob. 35.5GICh. 35.4 - Prob. 35.6GICh. 35 - Prob. 1FTDCh. 35 - Prob. 2FTDCh. 35 - Prob. 3FTDCh. 35 - Prob. 4FTD
Ch. 35 - Prob. 5FTDCh. 35 - Prob. 6FTDCh. 35 - Prob. 7FTDCh. 35 - What did Einstein mean by his re maxi, loosely...Ch. 35 - Prob. 9FTDCh. 35 - Prob. 10FTDCh. 35 - Prob. 12ECh. 35 - Prob. 13ECh. 35 - Prob. 14ECh. 35 - Prob. 15ECh. 35 - Prob. 16ECh. 35 - Prob. 17ECh. 35 - Prob. 18ECh. 35 - Prob. 19ECh. 35 - Prob. 20ECh. 35 - Prob. 21ECh. 35 - Prob. 22ECh. 35 - Prob. 23ECh. 35 - Prob. 24ECh. 35 - Prob. 25ECh. 35 - Prob. 26ECh. 35 - Prob. 27ECh. 35 - Prob. 28ECh. 35 - Prob. 29ECh. 35 - Prob. 30ECh. 35 - Prob. 31ECh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - Prob. 34PCh. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 38PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Prob. 45PCh. 35 - Prob. 46PCh. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51PCh. 35 - Prob. 52PCh. 35 - Prob. 53PCh. 35 - Prob. 54PCh. 35 - Prob. 55PCh. 35 - Prob. 56PCh. 35 - Prob. 57PCh. 35 - Prob. 58PCh. 35 - Prob. 59PCh. 35 - Prob. 60PCh. 35 - Prob. 61PPCh. 35 - Prob. 62PPCh. 35 - Prob. 63PPCh. 35 - Prob. 64PP
Knowledge Booster
Similar questions
- Suppose a wave function is discontinuous at some point. Can this function represent a quantum state of some physical particle? Why? Why not?arrow_forwardFor a particle confined to an infinite square well, is it correct to say that each state of definite energy is also a state of definite wavelength? Is it also a state of definite momentum? Explain. (Hint: Remember that momentum is a vector.)arrow_forwardA particle with mass 6.65×1027 kg is confined to an infinite square well of width L. The energy of the third level is 2.00×1024 J. Calculate the value of L.arrow_forward
- A particle of mass m is moving in an infinite 1D quantum well of width L. y,(x) = J? sinx. sin nAx L (a) How much energy must be given to the particle so it can transition from the ground state to the second excited state? (b) If the particle is in the first excited state, what is the probability of finding the particle between x = and x = ;? 2.arrow_forwardAn electron is trapped in an infinitely deep one-dimensional well of width 10 nm. Initially, the electron occupies the n = 4 state. Suppose the electron relaxes to ground state with the accompanying emission of a photon. Calculate the energy of the photon.arrow_forwardAn electron trapped in a one-dimensional infinitely deep potential well with a width of 250 pm is excited from the first excited state to the third excited state. What energy must the electron acquire for this quantum jump to occur? The electron then emits a photon and transitions to the ground state. Determine the wavelength and momentum of the emitted photon.arrow_forward
- A particle is confined within a three-dimensional cubical box of side L. Determine the L probability of finding the particle somewhere in the region between y = 0 and y =- for 4 the particle in the ground state. (a) 0.0813 (b) 0.250 (c) 0.182 (d) 0.0908arrow_forward∆E ∆t ≥ ħTime is a parameter, not an observable. ∆t is some timescale over which the expectation value of an operator changes. For example, an electron's angular momentum in a hydrogen atom decays from 2p to 1s. These decays are relativistic, however the uncertainty principle is still valid, and we can use it to estimate uncertainties. The lifetime of hydrogen in the 2p state to decay to the Is ground state is 1.6 x 10-9 s. Estimate the uncertainty ∆E in energy of this excited state. What is the corresponding linewidth in angstroms?arrow_forward6arrow_forward
- The general solution of the Schrodinger equation for a particle confined in an infinite square-well potential (where V = 0) of width L is w(x)= C sin kx + Dcos kx V2mE k where C and D are constants, E is the energy of the particle and m is the mass of the particle. Show that the energy E of the particle inside the square-well potential is quantised.arrow_forwardIt's a quantum mechanics question.arrow_forwardFor a quantum harmonic oscillator in its ground state. Find: a) (x) b) (x) c) o,arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning