Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 47P
(a)
To determine
The probability that the detector will find a particle in the ground state of the square well if the detector is centered on the midpoint of the well.
(b)
To determine
The probability that the detector will find a particle in the ground state of the square well if the detector is centered on a point one fourth of the way across the well.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle is confined in an infinite potential well. If the width of the well is a, what is the probability to find the
particle in the first quarter of the well?
1
1
sin
Ttn
6
1
O 2
2n t
1
1
Ttn
sin
O 8
1
1
-sin
2n Tt
4
An electron is trapped in a one-dimensional region of width 0,05 nm. Find the three smallest possible values allowed for the energy of the electron.
D4
Chapter 35 Solutions
Essential University Physics (3rd Edition)
Ch. 35.1 - Prob. 35.1GICh. 35.2 - Prob. 35.2GICh. 35.3 - Prob. 35.3GICh. 35.3 - Prob. 35.4GICh. 35.3 - Prob. 35.5GICh. 35.4 - Prob. 35.6GICh. 35 - Prob. 1FTDCh. 35 - Prob. 2FTDCh. 35 - Prob. 3FTDCh. 35 - Prob. 4FTD
Ch. 35 - Prob. 5FTDCh. 35 - Prob. 6FTDCh. 35 - Prob. 7FTDCh. 35 - What did Einstein mean by his re maxi, loosely...Ch. 35 - Prob. 9FTDCh. 35 - Prob. 10FTDCh. 35 - Prob. 12ECh. 35 - Prob. 13ECh. 35 - Prob. 14ECh. 35 - Prob. 15ECh. 35 - Prob. 16ECh. 35 - Prob. 17ECh. 35 - Prob. 18ECh. 35 - Prob. 19ECh. 35 - Prob. 20ECh. 35 - Prob. 21ECh. 35 - Prob. 22ECh. 35 - Prob. 23ECh. 35 - Prob. 24ECh. 35 - Prob. 25ECh. 35 - Prob. 26ECh. 35 - Prob. 27ECh. 35 - Prob. 28ECh. 35 - Prob. 29ECh. 35 - Prob. 30ECh. 35 - Prob. 31ECh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - Prob. 34PCh. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 38PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Prob. 45PCh. 35 - Prob. 46PCh. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51PCh. 35 - Prob. 52PCh. 35 - Prob. 53PCh. 35 - Prob. 54PCh. 35 - Prob. 55PCh. 35 - Prob. 56PCh. 35 - Prob. 57PCh. 35 - Prob. 58PCh. 35 - Prob. 59PCh. 35 - Prob. 60PCh. 35 - Prob. 61PPCh. 35 - Prob. 62PPCh. 35 - Prob. 63PPCh. 35 - Prob. 64PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the ground state energy (in eV) of a proton confined to a one-dimensional box the size of the uranium nucleus that has a radius of approximately 15.0 fm?arrow_forwardA particle of mass m is confined to a box of width L. If the particle is in the first excited state, what are the probabilities of finding the particle in a region of width0.020 L around the given point x: (a) x=0.25L; (b) x=040L; (c) 0.75L and (d) x=0.90L.arrow_forwardAn electron is bound in a square well of width 1.50 nm and depth U0 = 6E1-IDW. If the electron is initially in the ground level and absorbs a photon, what maximum wavelength can the photon have and still liberate the electron from the well?arrow_forward
- An electron is bound in a square well of depth U0 = 6E1-IDW. What is the width of the well if its ground-state energy is 2.00 eV?arrow_forwardThe wave function of a particle in a one-dimensional box of width L is u(x) = A sin (7x/L). If we know the particle must be somewhere in the box, what must be the value of A?arrow_forwardThe wave function of a particle in a box is given by ____________ a) A sin(kx) b) A cos(kx) c) Asin(kx) + Bcos(kx) d) A sin(kx) – B cos(kx)arrow_forward
- An electron is trapped in a square well potential of infinite depth with width L. If the electron is in the ground state, which of the following values is closest to the probability of finding the electron between x = 0 and x = L/3? (A)35% (B)25% (C)20% (D)15% (E)10%arrow_forwardFor a particle in a cubical box dimensions L1= L2= L3= L, determine the energy values in the lowest eight energy levels (as multiplies of h2/ 8mL2), and the degeneracy of each level.arrow_forwardA particle of mass m is moving in an infinite 1D quantum well of width L. y,(x) = J? sinx. sin nAx L (a) How much energy must be given to the particle so it can transition from the ground state to the second excited state? (b) If the particle is in the first excited state, what is the probability of finding the particle between x = and x = ;? 2.arrow_forward
- An electron is trapped in a one-dimensional infinite potential well that is 170 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width ôx = 5.0 pm centered at x = 81 pm? (Hint: The interval ôx is so narrow that you can take the probability density to be constant within it.) %3D Number Units T h ルarrow_forwardAn alpha particle of mass 3727.4 x 106 eV/c² is trapped in a box of size L = 0.000001 nm = 106 nm (the size of a nucleus). Treat this as a 1D infinite square well. Find: (a) The n = 5 wavefunction and probability density. Draw a graph. (b) The ground state energy and first excited state. (c) The wavelength of a photon emitted when the alpha particle transitions from the first excited state to the ground state. [Note that wavelengths between 0.001 nm to 10 nm are x rays and less than 0.001 nm are gamma rays.] (d) The probability that the alpha particle is in the range x = 0 to x = 2/5L for the n= 5 state. (e) The expectation value of the position of the alpha particle for then=5 state. If by inspection, explain.arrow_forwardAn electron is bound in a square well of width 1.05 nm and depth U0=6E∞, where E∞ is the ground-state energy for an infinitely deep potential well.If the electron is initially in the ground level, E1=0.625E∞ , and absorbs a photon, what maximum wavelength can the photon have and still liberate the electron from the well?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning