Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 35, Problem 48P
(a)
To determine
The probability that a particle in an infinite square well located in the central one fourth of the well for the quantum state
(b)
To determine
The probability that a particle in an infinite square well located in the central one fourth of the well for the quantum state
(c)
To determine
The probability that a particle in an infinite square well located in the central one fourth of the well for the quantum state
(d)
To determine
The probability that a particle in an infinite square well located in the central one fourth of the well for the quantum state
(e)
To determine
The classical probability in this situation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A one-dimensional infinite well of length 200 pm contains an electron in its third excited state.We position an electrondetector probe of width 2.00 pm so that it is centered on a point of maximum probability density. (a) What is the probability of detection by the probe? (b) If we insert the probe as described 1000 times, how many times should we expect the electron to materialize on the end of the probe (and thus be detected)?
An electron is trapped in a one-dimensional infinite potential well that is 460 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width δx = 5.0 pm centered at x = 300 pm? (Hint: The interval δx is so narrow that you can take the probability density to be constant within it.)
A quantum mechanical particle moving in one dimension between impenetrable barriers has energy levels ϵ,4ϵ,9ϵ,...ϵ, 4ϵ, 9ϵ, ... , that is En=ϵn2En=ϵ n2 . Suppose that ϵ=0.035eVϵ =0.035 eV for a certain such quantum system. What is the probability (as a percent) that such a system will be in its ground state when it is in contact with a reservoir at room temperature?
The probability that the system will be in its ground state when it is in contact with a reservoir at room temperature is
Chapter 35 Solutions
Essential University Physics (3rd Edition)
Ch. 35.1 - Prob. 35.1GICh. 35.2 - Prob. 35.2GICh. 35.3 - Prob. 35.3GICh. 35.3 - Prob. 35.4GICh. 35.3 - Prob. 35.5GICh. 35.4 - Prob. 35.6GICh. 35 - Prob. 1FTDCh. 35 - Prob. 2FTDCh. 35 - Prob. 3FTDCh. 35 - Prob. 4FTD
Ch. 35 - Prob. 5FTDCh. 35 - Prob. 6FTDCh. 35 - Prob. 7FTDCh. 35 - What did Einstein mean by his re maxi, loosely...Ch. 35 - Prob. 9FTDCh. 35 - Prob. 10FTDCh. 35 - Prob. 12ECh. 35 - Prob. 13ECh. 35 - Prob. 14ECh. 35 - Prob. 15ECh. 35 - Prob. 16ECh. 35 - Prob. 17ECh. 35 - Prob. 18ECh. 35 - Prob. 19ECh. 35 - Prob. 20ECh. 35 - Prob. 21ECh. 35 - Prob. 22ECh. 35 - Prob. 23ECh. 35 - Prob. 24ECh. 35 - Prob. 25ECh. 35 - Prob. 26ECh. 35 - Prob. 27ECh. 35 - Prob. 28ECh. 35 - Prob. 29ECh. 35 - Prob. 30ECh. 35 - Prob. 31ECh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - Prob. 34PCh. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 38PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Prob. 45PCh. 35 - Prob. 46PCh. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51PCh. 35 - Prob. 52PCh. 35 - Prob. 53PCh. 35 - Prob. 54PCh. 35 - Prob. 55PCh. 35 - Prob. 56PCh. 35 - Prob. 57PCh. 35 - Prob. 58PCh. 35 - Prob. 59PCh. 35 - Prob. 60PCh. 35 - Prob. 61PPCh. 35 - Prob. 62PPCh. 35 - Prob. 63PPCh. 35 - Prob. 64PP
Knowledge Booster
Similar questions
- A particle is in a three-dimensional box. The y length of the box is twice the x length, and the z length is one-third of the y length. (a) What is the energy difference between the first excited level and the ground level? (b) Is the first excited level degenerate? (c) In terms of the x length, where is the probability distribution the greatest in the lowest-energy level?arrow_forwardConsider the quantum state 0.14|0> + 0.99|1>. On measuring this state in the computational basis, what is the probability that the outcome is 0?arrow_forwardAn electron is trapped in a one-dimensional infinite potential well that is 470 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width &x = 5.0 pm centered at x = 260 pm? (Hint: The interval 8x is so narrow that you can take the probability density to be constant within it.) Number Unitsarrow_forward
- The ground state wave function for the quantum mechanical simple harmonic oscillator is of the form, y(x)= A,e-** mo, a = where A, is the normalization factor and a is a constant that depends on the mass and classical frequency of the oscillator. Find the normalization factor in terms of the mass and classical frequency w, The following definite integral should be helpful: 1 2aarrow_forwardAssume that an electron is confined in a one-dimensional quantum well with infinite walls, draw the wave functions for the first 3 levels, ψ1, ψ2, ψ3. Also, show the probability density functions corresponding to these three levels?arrow_forwardA particle of mass m is confined to a one-dimensional (1D) infinite well (i.e., a 1D box) of width 6 m. The potential energy is given by (0 6m) The particle is in the n=5 quantum state. What is the lowest positive value of x (in m) such that the particle has zero probability of being found at x?arrow_forward
- An electron is trapped in a one-dimensional infinite potential well that is 100 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width x = 5.0 pm centered at x = (a) 25 pm, (b) 50 pm, and (c) 90 pm? (Hint: The interval x is so narrow that you can take the probability density to be constant within it.)arrow_forward∆E ∆t ≥ ħTime is a parameter, not an observable. ∆t is some timescale over which the expectation value of an operator changes. For example, an electron's angular momentum in a hydrogen atom decays from 2p to 1s. These decays are relativistic, however the uncertainty principle is still valid, and we can use it to estimate uncertainties. ∆E doesn't change in time, so when an excited state decays to the ground state (infinite lifetime, so no energy uncertainty), the energy uncertainty has to go somewhere. Usually, it’s in the frequency of a photon giving a width (through E = hν) to the transition line in an spectroscopy experiment. The linewidth of the 2p state in 9Be+ is 19.4 MHz. What is its lifetime? (Note: in the relativistic atom–photon system, the Hamiltonian is independent of time and both energy and its uncertainty are conserved.)arrow_forwardThe wave function for a quantum particle is given by ?(?)=??between ?=0and ?=1.00, and ?(?)=0elsewhere. Find (a) the value of the normalization constant ?, (b) the probability that the particle will be found between ?=0.300and ?=0.400, and (c) the expectation value of the particle’s position.arrow_forward
- An electron is trapped in a one-dimensional infinite potential well that is 430 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width &x = 5.0 pm centered at x = 260 pm? (Hint: The interval Sx is so narrow that you can take the probability density to be constant within it.) Number i Unitsarrow_forwardAn electron is confined to move in the xy plane in a rectangle whose dimensions are Lx and Ly. That is, the electron is trapped in a two dimensional potential well having lengths of Lx and Ly. In this situation, the allowed energies of the electron depend on two quantum numbers nx and ny and are given by E = h2/8me (nx2/Lx2 + ny2/Ly2)Using this information, we wish to find the wavelength of a photon needed to excite the electron from the ground state to the second excited state, assuming Lx = Ly = L. (a) Using the assumption on the lengths, write an expression for the allowed energies of the electron in terms of the quantumnumbers nx and ny. (b) What values of nx and ny correspond to the ground state? (c) Find the energy of the ground state. (d) What are the possible values of nx and ny for the first excited state, that is, the next-highest state in terms of energy? (e) What are the possible values of nx and ny for thesecond excited state?…arrow_forwardAccording to the correspondence principle of quantum mechanics, the same results as in classical theory should be obtained when taking very large quantum numbers. Show that when' n o, the probability of finding a particle trapped in a well of infinite potential between x and x + Ax is Ax / L, which is independent of x; this corresponds to the classical probability.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning