Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 35P
(a)
To determine
The energy of an emitted photon by drop of an electron from
(b)
To determine
The wave length of photon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Bohr model for the hydrogen atom posits that the atom's electron can only occupy circular orbits, with the circumference of each orbit containing an integral number of de Broglie wavelengths.
Suppose that an electron in a particular hydrogen atom is in the first excited orbit, corresponding to
n = 2.
(a)
What is the radius (in nm) of this electron's orbit around the atom's nucleus (a proton)?
nm
(b)
What is the de Broglie wavelength (in nm) for an electron in this orbit?
nm
The Bohr model for the hydrogen atom posits that the atom's electron can only occupy circular orbits, with the circumference of each orbit containing an integral number of de Broglie wavelengths.
Suppose that an electron in a particular hydrogen atom is in the seventh excited orbit, corresponding to n = 8.
(a) What is the radius (in nm) of this electron's orbit around the atom's nucleus (a proton)?
nm
(b) What is the de Broglie wavelength (in nm) for an electron in this orbit?
nm
In the Bohr model of the hydrogen atom, what is the de Broglie wavelength of the electron when it is in (a) the n = 1 level and (b) the n = 4 level? In both cases, compare the de Broglie wavelength to the circumference 2prn of the orbit.
Chapter 35 Solutions
Essential University Physics (3rd Edition)
Ch. 35.1 - Prob. 35.1GICh. 35.2 - Prob. 35.2GICh. 35.3 - Prob. 35.3GICh. 35.3 - Prob. 35.4GICh. 35.3 - Prob. 35.5GICh. 35.4 - Prob. 35.6GICh. 35 - Prob. 1FTDCh. 35 - Prob. 2FTDCh. 35 - Prob. 3FTDCh. 35 - Prob. 4FTD
Ch. 35 - Prob. 5FTDCh. 35 - Prob. 6FTDCh. 35 - Prob. 7FTDCh. 35 - What did Einstein mean by his re maxi, loosely...Ch. 35 - Prob. 9FTDCh. 35 - Prob. 10FTDCh. 35 - Prob. 12ECh. 35 - Prob. 13ECh. 35 - Prob. 14ECh. 35 - Prob. 15ECh. 35 - Prob. 16ECh. 35 - Prob. 17ECh. 35 - Prob. 18ECh. 35 - Prob. 19ECh. 35 - Prob. 20ECh. 35 - Prob. 21ECh. 35 - Prob. 22ECh. 35 - Prob. 23ECh. 35 - Prob. 24ECh. 35 - Prob. 25ECh. 35 - Prob. 26ECh. 35 - Prob. 27ECh. 35 - Prob. 28ECh. 35 - Prob. 29ECh. 35 - Prob. 30ECh. 35 - Prob. 31ECh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - Prob. 34PCh. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 38PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Prob. 45PCh. 35 - Prob. 46PCh. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51PCh. 35 - Prob. 52PCh. 35 - Prob. 53PCh. 35 - Prob. 54PCh. 35 - Prob. 55PCh. 35 - Prob. 56PCh. 35 - Prob. 57PCh. 35 - Prob. 58PCh. 35 - Prob. 59PCh. 35 - Prob. 60PCh. 35 - Prob. 61PPCh. 35 - Prob. 62PPCh. 35 - Prob. 63PPCh. 35 - Prob. 64PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the de Brogue wavelength of a proton whose kinetic energy is 2.0 MeV? 10.0 MeV?arrow_forwardWhen a hydrogen atom is in its ground state, what are the shortest and longest wavelengths of the photons it can absorb without being ionized?arrow_forwardWhat is the maximum photon wavelength that would free an electron in a hydrogen atom when it is in the n = 8 excited state? (Give the answer in meters.)arrow_forward
- (a) A hydrogen atom has its electron in the n = 2 level. The radius of the electron's orbit in the Bohr model is 0.212 nm. Find the de Broglie wavelength of the electron under these circumstances. (b) What is the momentum, mv, of the electron in its orbit? kg-m/sarrow_forwardX-rays of wavelength 1.520×10^−2 nm are scattered from a carbon atom. The wavelength shift is measured to be 3.26×10^−4 nm. a) What is the scattering angle? b) How much energy, in , does each photon impart to each electron?arrow_forwardUsing the average speed of a gas, (8?????)1/2, determine the average de Broglie wavelength for an He atom at 25 °C and at 500 °C.How fast would the He atom need to travel in order to have the same linear momentum as a 500 nm photon?arrow_forward
- (a) A hydrogen atom has its electron in the n = 6 level. The radius of the electron's orbit in the Bohr model is 1.905 nm. Find the de Broglie wavelength of the electron under these circumstances.___________ m(b) What is the momentum, mv, of the electron in its orbit? ________kg-m/sarrow_forwardAn electron has a de Broglie wavelength equal to the diameter of a hydrogen atom in its ground state. (a) What is the kinetic energy of the electron? (The Bohr radius is 0.0529 nm.) eV(b) How does this energy compare with the magnitude of the ground-state energy of the hydrogen atom? many orders of magnitude smallerabout 10 times as small about the sameabout 10 times as largemany orders of magnitude largerarrow_forwardX-ray is produced by bombarding a tungsten target with high energy electrons accelerated by 8.8 kV of voltage. Use σ = 1 for the electron transition down to K shell (n = 1) and σ = 7.4 for the electron transition down to L shell (n = 2) for characteristic X-ray. What is the kinetic energy of electrons accelerated by 8.8 kV of high voltage? Assume that the initial speed of electrons emitted from a filament by thermionic emission is zero. What is the minimum wavelength of electromagnetic waves produced by bremsstrahlung?arrow_forward
- Calculate the minimum-wavelength x-ray that can be produced when a target is struck by an electron that has been accelerated through a potential difference of 21.0 kV and 1.10 ✕ 102 kV. (a) 21.0 kV ?min = m (b) 1.10 ✕ 102 kV ?min = m (c) What happens to the minimum wavelength as the potential difference increases? increasesdecreases remains the samearrow_forwardIn an electron-diffraction experiment using an accelerating voltage of 54 V, an intensity maximum occurs for u = 50° (see Fig. ). X-ray diffraction indicates that the atomic spacing in the target is d = 2.18 * 10-10 m = 0.218 nm. The electrons have negligible kinetic energy before being accelerated. Find the electron wavelength.arrow_forwardA Hydrogen atom initially in its ground state i.e., n = 1 level, absorbs a photon and ends up in n = 4 level. (a) What must have been the frequency of the photon? Now the electron makes spontaneous emission and comes back to the ground state. (b) What are the possible frequencies of the photons emitted during this process?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax