Essential University Physics (3rd Edition)
Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
Question
Book Icon
Chapter 35, Problem 33P
To determine

To show: If ψ1 and ψ2 are solutions of the Schrödinger equation for the same energy E , then the linear combination aψ1+bψ2 is also a solution.

Blurred answer
Students have asked these similar questions
An electron outside a dielectric is attracted to the surface by a force, F = -A/x2, where x is the perpendicular distance from the electron to the surface, and A is a positive constant. Electrons are prevented from crossing the surface, as there aren't any quantum states in the dielectric for them to occupy. Suppose that the surface is infinite, so that the problem is 1-dimensional. Write the Schrodinger equation for an electron outside of the surface (x > 0) and determine the appropriate boundary condition at x = 0. Obtain a formula for the allowed energy levels of the system. (Hint: Compare the equation for the wave function Ψ(x) with that satisfied by the wave functinon u(r) = rR(r) for a hydrogenic atom.)
A function of the form e^−gx2 is a solution of the Schrodinger equation for the harmonic oscillator, provided that g is chosen correctly. In this problem you will find the correct form of g. (a) Start by substituting Ψ = e^−gx2 into the left-hand side of the Schrodinger equation for the harmonic oscillator and evaluating the second derivative. (b) You will find that in general the resulting expression is not of the form constant × Ψ, implying that Ψ is not a solution to the equation. However, by choosing the value of g such that the terms in x^2 cancel one another, a solution is obtained. Find the required form of g and hence the corresponding energy. (c) Confirm that the function so obtained is indeed the ground state of the harmonic oscillator and has the correct energy.
Check which of the wavefunctions below represents a physically possible solution to the Schrodinger equation for a free electron? 1:) ▼ (r, t) = e'(2x102z-wt) 2:) V (x, t) = e'(2x10%z-wt) 3:) V (x, t) = e'(2x1014-wt) %3D 4:) V (r, t) = e"(2×1015z–ut) 5:) V (x, t) = e'(2x100z-wt)
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning