Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 35, Problem 58P
To determine
To show: The following wave functions satisfy the Schrödinger equation in the region indicated
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The eigenfunction for OHS for n=1 is of the form
Vi(x) =
-「网2 ep
with value
= "ħw
mo
and energy E1 =
a. Write the form of the function as a solution of the Schrodinger
equation for this OHS (v(x,t)
b. Draw the wave function and energy levels of this OHS until n = 4.
%3D
An electron is in an infinite potential well of width 364 pm, and is in the normalised superposition state Ψ=cos(θ) ψ5-sin(θ) i ψ8. If the value of θ is -1.03 radians, what is the expectation value of energy, in eV, of the electron?
What is the answer
Chapter 35 Solutions
Essential University Physics (3rd Edition)
Ch. 35.1 - Prob. 35.1GICh. 35.2 - Prob. 35.2GICh. 35.3 - Prob. 35.3GICh. 35.3 - Prob. 35.4GICh. 35.3 - Prob. 35.5GICh. 35.4 - Prob. 35.6GICh. 35 - Prob. 1FTDCh. 35 - Prob. 2FTDCh. 35 - Prob. 3FTDCh. 35 - Prob. 4FTD
Ch. 35 - Prob. 5FTDCh. 35 - Prob. 6FTDCh. 35 - Prob. 7FTDCh. 35 - What did Einstein mean by his re maxi, loosely...Ch. 35 - Prob. 9FTDCh. 35 - Prob. 10FTDCh. 35 - Prob. 12ECh. 35 - Prob. 13ECh. 35 - Prob. 14ECh. 35 - Prob. 15ECh. 35 - Prob. 16ECh. 35 - Prob. 17ECh. 35 - Prob. 18ECh. 35 - Prob. 19ECh. 35 - Prob. 20ECh. 35 - Prob. 21ECh. 35 - Prob. 22ECh. 35 - Prob. 23ECh. 35 - Prob. 24ECh. 35 - Prob. 25ECh. 35 - Prob. 26ECh. 35 - Prob. 27ECh. 35 - Prob. 28ECh. 35 - Prob. 29ECh. 35 - Prob. 30ECh. 35 - Prob. 31ECh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - Prob. 34PCh. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 38PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Prob. 45PCh. 35 - Prob. 46PCh. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51PCh. 35 - Prob. 52PCh. 35 - Prob. 53PCh. 35 - Prob. 54PCh. 35 - Prob. 55PCh. 35 - Prob. 56PCh. 35 - Prob. 57PCh. 35 - Prob. 58PCh. 35 - Prob. 59PCh. 35 - Prob. 60PCh. 35 - Prob. 61PPCh. 35 - Prob. 62PPCh. 35 - Prob. 63PPCh. 35 - Prob. 64PP
Knowledge Booster
Similar questions
- An electron with total energy En approaches a barrier of height Ub and thickness L . Calculate the transmission coefficient T. Where the energy En= 25.5 eV, Ub=34.005 eV the width L=75 pm is given .arrow_forwardFind the angular momentum and kinetic energy in the z axis for the Cos30eiΦ+ Sin30e-iΦ wave function.arrow_forwardA Gaussian wave packet is a function that satisfies the Schrodinger equation and is normalized over all space. Normalize the wave function if the Gaussian function can be written, 00 Y(x) = Ae-[(x-c)/4ɛ]? a helpful integral: " e-a(z-b)² dz = a And determine what the function of energy for a particle under this wave function would be if U(x) = 0 over all space.arrow_forward
- An electron (m = 9.109*10^-31 kg) is confined in a one-dimensional infinite square well of width L = 10 nm. determine uncertainity in velocityarrow_forwardHere are the properties of the GaAs quantum well in the figure. v0 = 100 ??? L = 200 Å ?∗ = 0.067 m* Find the energy values of the first three levels of this well. Corresponding wave functions Draw the graph. It is assumed that the effective mass m* given for the well is also valid for barriers. please. The material of the barrier is not important here. The important thing is the V0 potential.arrow_forwardSolve the time-independent Schrödinger equation and determine the energy levels and the wave function of a particle in the potential a? V (x) = Vol a + 2r2 with a = const.arrow_forward
- Try to normalize the wave function ei(kx-ωt) . Why can’t it be done over all space? Explain why this is not possiblearrow_forwardThe properties of the GaAs quantum well in the figure are as follows. V0 = 100 meV L = 200 Å m∗ = 0.067 me Find the energy values of the first three levels of this well using the finite difference method. Plot the corresponding wave functions. Effective mass m ∗ given for the well Agree that it also applies to barriers. The material of the barrier is not important here. Important is the V0 potential.arrow_forwardThe Einstein's model makes the assumption that a solid can be treated a set of N identical, independent harmonic oscillators. Compute the heat capacity for such a system. Make the simplifying assumption that a single harmonic oscillator is described by the quantized energy levels: E, = kħw, where k = 0,1, 2, ....arrow_forward
- Particle is described by the wave function p = 0, x <0 and = Ae-*/L , x 2 0 a. Calculate A. b. Take L as 10 nm and calculate the probability of finding the particle in the region 1nm < x < 5nm.arrow_forwardAn electron is trapped in a one-dimensional infinite potential well that is 200 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width öx = 5.0 pm centered at x = 100 pm? (Hint: The interval öx is so narrow that you can take the probability density to be constant within it.) Number i Unitsarrow_forwardAs6arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax