Liquid hydrogen is flowing through an insulated pipe
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Heat and Mass Transfer: Fundamentals and Applications
- Determine the rate of heat transfer per meter length to a light oil flowing through a 2.5-cm-ID, 60-cm-long copper tube at a velocity of 0.03 m/s. The oil enters the tube at 16C, and the tube is heated by steam condensing on its outer surface at atmospheric pressure with a heat transfer coefficient of 11.3 kW/m K. The properties of the oil at various temperatures are listed in the following table: Temperature, T(C) 15 30 40 65 100 (kg/m3) 912 912 896 880 864 c(kJ/kgK) 1.80 1.84 1.925 2.0 2.135 k(W/mK) 0.133 0.133 0.131 0.129 0.128 (kg/ms) 0.089 0.0414 0.023 0.00786 0.0033 Pr 1204 573 338 122 55arrow_forward1.60 Two electric resistance heaters with a 20 cm length and a 2 cm diameter are inserted into a well-insulated 40-L tank of water that is initially at 300 K. If each heater dissipates 500 W, what is the time required for bringing the water temperature in the tank to 340 K? State your assumption for your analysis.arrow_forward3.16 A large, 2.54-cm.-thick copper plate is placed between two air streams. The heat transfer coefficient on one side is and on the other side is . If the temperature of both streams is suddenly changed from 38°C to 93°C, determine how long it takes for the copper plate to reach a temperature of 82°C.arrow_forward
- 1.19 A cryogenic fluid is stored in a 0.3-m-diameter spherical container is still air. If the convection heat transfer coefficient between the outer surface of the container and the air is 6.8 , the temperature of the air is 27°C, and the temperature of the surface of the sphere is –183°C, determine the rate of heat transfer by convection.arrow_forwardA pipe 30 m long with an outer diameter of 75 mm is used to deliver steam at a rate of 1500 kg / hour. The steam pressure is 198.53 kPa entering the pipe with a quality of 98%. The pipe that needs to be insulated with a thermal conductivity of 0.2 W / (m K) so that the quality of the steam only decreases slightly to 95%. The temperature of the outer surface of the insulation is assumed to be 25 ° C. The conductive of the pipe material and the situation of no pressure drop in the pipe. A. Determine the enthalpy of incoming vapor = Answer kJ / kg. b. Determine the enthalpy of steam that comes out = Answer kJ / kg. c. Determine the change / loss of steam heat along the flow = Answer watt. d. Determine the minimum required insulation thickness = Answer cm.arrow_forwardA steam is flowing through a 5.7 m long of steel tube that has inner and outer radii of r, = 0.015 and r, 0,024 m, and a thermal conductivity of 0.14 W/m.K. The steam and the outer surface of the tube is maintained at constant temperature of 150 °C and the air = 25 °C, h = 0.35 W/m2.k) is surrounding the tube. To prevent the outer surface of the steel from the environmental conditions, a material that has a thermal conductivity of 0.014 W/m.k is wrapped over the outer surface of the steel. What is the maximum heat transfer from the steam to the air (W)? NOTE: Enter your answer. Answer Air Th Steam Steel Tr 111 Toarrow_forward
- Nuclear wastes are packed in a long, cylindrical container. The wastes steadily generate energy at auniform rate of 2.0 W/cm^3. If the container surface is cooled by convection of a water coolant at 30oC, determine the surface temperature of the container. The container diameter, d = 2 cm, and the heat transfer coefficient is 290 W/(m^2*K). Heat transfer by radiation from the surface is expected to be negligible.arrow_forwardA Spherical Container Is Made Of Plastic (K=2 W/MK, Ρ=5000 Kg/M) And Has Inner And Outer Radii Of 10 Cm And 11 Cm, Respectively. Hot Oil (C=3000 J/KgK, Ρ=800 Kg/M3) At 80 0C Is Stored Within The Container And The Heat Transfer Coefficient Between The Oil And The Inner Surface Of The Container H=30W/M2K The Outer Surface Of The Container IsThis problem has been solved! See the answerA spherical container is made of plastic (k=2 W/mK, ρ=5000 kg/m) and has inner and outer radii of 10 cm and 11 cm, respectively. Hot oil (c=3000 J/kgK, ρ=800 kg/m3) at 80 0C is stored within the container and the heat transfer coefficient between the oil and the inner surface of the container h=30W/m2K The outer surface of the container is perfectly insulated. Solve the differential equation under the boundary conditions for steady one dimensional heat conduction through the plastic material. a)obtain an equation fort he variation of temperature within the plastic material? b) Calculate the temperature of…arrow_forwardGround turkey was made into me at balls and refrigerated at 2 ° C before being deep fried. The diameter of each meat ball is 9cm. To make sure that the meat balls are safe to be consumed, they must be cooked over 70 ° C. Assume that the cooking oil is at a constant temperature of 180 ° C and has a heat transfer coefficient of 50 W/(m 2 ∙ K). The conductivity and specific heat of the ground turkey are approximated at 2 W/( m∙K ) and 4 kJ/( kg ∙ K) respectively. The density of the ground turkey is 500kg/ m 3 . a) During the deep- frying process, do you anticipate that each meat ball has a uniform temperature distribution throughout its volume? Please show calculation to support your answer (5 pts) . b) Please calculate the minimum time required for cooking (1 5 p ts). c) When served, what are the surface and center temperatures of each meat ball ( 15 pts).arrow_forward
- Warm air is blown over the inner surface of the windshield of an automobile to defrost ice accumulated on the outer surface. The windshield has a thickness of 5 mm and thermal conductivity of 1.4 W/m-K. The outside ambient temperature is -10°C and the convection heat transfer coefficient is 200 W/m2-K, while the ambient temperature inside the automobile is 25°C. Determine the value of the convection heat transfer coefficient for the warm air blowing over the inner surface of the windshield necessary to cause the accumulated ice to begin melting.arrow_forwardA pipe in a manufacturing plant is transporting superheated vapor at a mass flow rate of 0.3 kg/s. The pipe is 10 m long, has an inner diameter of 5 cm and pipe wall thickness of 6 mm. The pipe has a thermal conductivity of 17 W/m.K, and the inner pipe surface is at a uniform temperature of 120 °C. The temperature drop between the inlet and the exit of the pipe is 7 °C, and the constant pressure specific heat of vapor is 2190 J/kg.°C. If the air temperature in the manufacturing plant is 25°C, determine the heat transfer coefficient as a result if convection between the outer pipe surface and the surrounding air. T(r) = 120°C Superheated Air, 25°C r2 vapor r1 0.3 kg/s L = 10 m Tin-Tout = 7°Carrow_forwardA spherical container is made of plastic (k=2 W/mK, ρ=5000 kg/m) and has inner and outer radii of 10 cm and 11 cm, respectively. Hot oil (c=3000 J/kgK, ρ=800 kg/m3) at 80 0C is stored within the container and the heat transfer coefficient between the oil and the inner surface of the container h=5 W/m2K. The outer surface of the container is perfectly insulated. Solve the differential equation under the boundary conditions for steady one dimensional heat conduction through the plastic material. h (W/m2K)=? a) Obtain an equation for the variation of temperature within the plastic material b) Calculate the temperature of the plastic material at the inner surface c) Calculate the temperature of the plastic material at the inner surfacearrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning