Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 20P
Water is boiling in a 25-cm-diameter aluminum pan
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The boiling temp of nitrogen at 1 atm is -196°C. If the temperature of liquid nitrogen in a tank open to the
atmosphere at sea level will remain constant until it is depleted, then any heat transfer to the tank will result in
the evaporation of some liquid nitrogen, which has a heat of vaporization of 198 kJ/kg and a density of 810
kg/m³ at 1 atm. Consider a 3.5-m-diameter spherical tank that is initially
filled with liquid nitrogen at 1 atm and -196°C. The tank is exposed to
ambient air at 16°C, with a convection heat transfer coefficient of 32 W/m2-
°C. The temperature of the thin-shelled spherical tank is observed to be
N2 vapor
almost the same as the temperature of the nitrogen inside. Determine the
rate of evaporation of the liquid nitrogen in the tank (in kg/s) as a result of
I atm
Liquid N3
-196°C
heat transfer from the ambient air if the tank is (a) not insulated, (b) insulated
with 6-cm thick fiberglass insulation (k=0.035 W/m-°C) and (c) insulated with
2-cm thick…
The boiling temp of nitrogen at 1 atm is -196°C. The temp of liquid
nitrogen in a tank open to the atmosphere at sea level will remain constant until it is depleted. Any heat
transfer to the tank will result in the evaporation of some liquid nitrogen, which has a heat of vaporization
of 198 kJ/kg and a density of 810 kg/m² at 1 atm. Consider a 3-m-diameter spherical tank that is initially
filled with liquid nitrogen at 1 atm and -196°C. The tank is exposed to ambient air at 15°C, with a
convection heat transfer coefficient of 35 W/m?-K. The temperature of the thin-shelled spherical tank is
observed to be almost the same as the temperature of the nitrogen inside. Determine the rate of
evaporation of the liquid nitrogen in the tank as a result of heat transfer
N, vapor
from the ambient air if the tank is (a) not insulated, (b) insulated with 5-
T= 15°C
cm thick fiberglass insulation (k=0.035 W/m-K) and (c) insulated with 2-
cm thick super-insulation which has an effective thermal…
An ASTM B75 copper tube sheathes a heating element that is used to boil water at 1254 kPa. The copper tube is immersed
horizontally in the water, and its surface is polished. The tube diameter and length are 5 mm and 9.5 cm, respectively. The maximum
use temperature for ASTM B75 copper tube is 204°C (ASME Code for Process Piping, ASME B31.3-2014, Table A-1M). Determine the
highest evaporation rate of water that can be achieved by the heater without heating the tube surface above the maximum use
temperature. Use the property tables to calculate the properties of water at saturation temperature. The surface tension o at 190°C is
0.03995 N/m. Also, Csf= 0.0130 and n 1.0 for the boiling water on a polished copper surface.
The highest evaporation rate of water is
g/s.
Chapter 3 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 3 - Consider heat conduction through a wall of...Ch. 3 - Consider heat conduction through a plane wall....Ch. 3 - What does the thermal resistance of a medium...Ch. 3 - Can we defme the convection resistance for a unit...Ch. 3 - Consider steady heat transfer through the wall of...Ch. 3 - How is the combined heat transfer coefficient...Ch. 3 - Why are the convection and the radiation...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Someone comments that a microwave oven can be...Ch. 3 - Consider two cold canned drinks, one wrapped in a...
Ch. 3 - The bottom of a pan is made of a 4-mm-thick...Ch. 3 - Consider a surface of area A at which the...Ch. 3 - How does the thermal resistance network associated...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Consider a window glass consisting of two...Ch. 3 - Prob. 16PCh. 3 - Consider a person standing in a room at 20C with...Ch. 3 - Consider an electrically heated brick house...Ch. 3 - A12-cm18-cm circuit board houses on its surface...Ch. 3 - Water is boiling in a 25-cm-diameter aluminum pan...Ch. 3 - A cylindrical resistor element on a circuit board...Ch. 3 - Prob. 22PCh. 3 - A1.0m1.5m double-pane window consists of two...Ch. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28EPCh. 3 - To defog the rear window of an automobile, a very...Ch. 3 - A transparent film is to be bonded onto the top...Ch. 3 - To defrost ice accumulated on the outer surface of...Ch. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Heat is to be conducted along a circuit board that...Ch. 3 - Prob. 38EPCh. 3 - Consider a house that has a 10m20-m base and a...Ch. 3 - Prob. 40EPCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - What is thermal contact resistance? How is it...Ch. 3 - Will the thermal contact resistance be greater for...Ch. 3 - Explain how the thermal contact resistance can be...Ch. 3 - A waII consists of two layers of insulation...Ch. 3 - Prob. 47CPCh. 3 - Consider two surfaces pressed against each other....Ch. 3 - Prob. 49PCh. 3 - Two 5-cm-diameter, 15-cm-long aluminum bars...Ch. 3 - Prob. 51PCh. 3 - Two identical aluminum plates with thickness of 30...Ch. 3 - A tvolayer wall is made of two metal plates, with...Ch. 3 - An aluminum plate and a stainless steel plate are...Ch. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - What are the two approaches used in the...Ch. 3 - The thermal resistance networks can also be used...Ch. 3 - When plotting the thermal resistance network...Ch. 3 - A 10-cm-thick vall is to be constructed with...Ch. 3 - Prob. 62EPCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - A 12-m-long and 5-m-high wall is constructed of...Ch. 3 - Prob. 70EPCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - What is an infinitely long cylinder? When is it...Ch. 3 - Can the thermal resistance concept be used for a...Ch. 3 - Consider a short cylinder whose top and bottom...Ch. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Superheated steam at an average temperature 20C is...Ch. 3 - Prob. 80EPCh. 3 - Prob. 81EPCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 85PCh. 3 - Prob. 86EPCh. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Liquid hydrogen is flowing through an insulated...Ch. 3 - Exposure to high concentrations of gaseous ammonia...Ch. 3 - A mixture of chemicals is flowing in a pipe...Ch. 3 - Ice slurry is being transported in a pipe...Ch. 3 - Prob. 93PCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - What is the critical radius of insulation? How is...Ch. 3 - Prob. 97CPCh. 3 - Prob. 98CPCh. 3 - Prob. 99CPCh. 3 - A pipe is insulated such that the outer radius of...Ch. 3 - A 0.083-in-diameter electrical wire at 90F is...Ch. 3 - Repeat Prob. 3-109E, assuming a thermal contact...Ch. 3 - Prob. 103PCh. 3 - Prob. 104PCh. 3 - Hot air is to be cooled as it is forced to flow...Ch. 3 - Prob. 106CPCh. 3 - Prob. 107CPCh. 3 - The fins attached to a surface are determined to...Ch. 3 - Explain how the fins enhance heat transfer from a...Ch. 3 - How does the overall effectiveness of a finned...Ch. 3 - Hot water is to be cooled as it flows through the...Ch. 3 - Consider two finned surfaces that are identical...Ch. 3 - The heat transfer surface area of a fin is equal...Ch. 3 - Does the (a) efficiency and (b) effectiveness of a...Ch. 3 - Two pin fins are identical, except that the...Ch. 3 - Two plate fins of constant rectangular cross...Ch. 3 - Two finned surfaces are identical, except that the...Ch. 3 - Obtain a relation for the fin efficiency for a fin...Ch. 3 - Prob. 119PCh. 3 - Consider a very long rectangular fin attached to a...Ch. 3 - Prob. 121PCh. 3 - Prob. 122EPCh. 3 - Prob. 123EPCh. 3 - Prob. 124PCh. 3 - Prob. 125PCh. 3 - Prob. 126PCh. 3 - Prob. 127PCh. 3 - Prob. 128PCh. 3 - Prob. 129PCh. 3 - Prob. 130PCh. 3 - Prob. 131PCh. 3 - Prob. 132PCh. 3 - Prob. 133PCh. 3 - Prob. 134PCh. 3 - The human body is adaptable to extreme climatic...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Prob. 138PCh. 3 - What is a conduction shape factor? How is it...Ch. 3 - What is the value of conduction shape factors in...Ch. 3 - Prob. 141PCh. 3 - A thin-walled cylindrical container is placed...Ch. 3 - Prob. 143PCh. 3 - Prob. 144PCh. 3 - Prob. 145PCh. 3 - Prob. 146EPCh. 3 - Prob. 147PCh. 3 - Prob. 148PCh. 3 - Prob. 149PCh. 3 - Prob. 150PCh. 3 - Prob. 151PCh. 3 - Prob. 152PCh. 3 - Consider a house with a flat roof whose outer...Ch. 3 - Prob. 154PCh. 3 - Radioactive material, stored in a spherical vessel...Ch. 3 - What is the R-value of a wall? How does it differ...Ch. 3 - What is effective emissivity for a plane-parallel...Ch. 3 - Prob. 158CPCh. 3 - What is a radiant barrier? What kinds of materials...Ch. 3 - Consider a house whose attic space is ventilated...Ch. 3 - Prob. 161PCh. 3 - Prob. 162PCh. 3 - Prob. 163PCh. 3 - Prob. 164PCh. 3 - Prob. 165PCh. 3 - Prob. 166PCh. 3 - Determine the winter R-value and the U-factor of a...Ch. 3 - The overall heat transfer coefficient (the...Ch. 3 - Prob. 169EPCh. 3 - Determine the summer and winter R-values. in m2 ....Ch. 3 - The overall heat transfer coefficient of a wall is...Ch. 3 - Two homes are identical, except that the walls of...Ch. 3 - Prob. 173PCh. 3 - Consider two identical people each generating 60 V...Ch. 3 - Cold conditioned air at 12C is flowing inside a...Ch. 3 - Hot water is flowing at an average velocity of 1.5...Ch. 3 - Prob. 177PCh. 3 - Prob. 178PCh. 3 - Prob. 179PCh. 3 - Prob. 180PCh. 3 - Prob. 181PCh. 3 - Prob. 182PCh. 3 - Prob. 183PCh. 3 - Prob. 184PCh. 3 - Prob. 185PCh. 3 - A total of 10 rectangular aluminum fins...Ch. 3 - Prob. 187PCh. 3 - A plane wall surface at 200C is to be cooled with...Ch. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - A 0.6-rn-diameter, 1.9-rn-long cylindrical tank...Ch. 3 - Prob. 194PCh. 3 - Prob. 195PCh. 3 - A thin-walled spherical tank is buried in the...Ch. 3 - Heat is lost at a rate of 275 W per m2 area of a 1...Ch. 3 - Prob. 198PCh. 3 - Heat is generated steadily in a 3-cm-diameter...Ch. 3 - Prob. 200PCh. 3 - Prob. 201PCh. 3 - Prob. 202PCh. 3 - Prob. 203PCh. 3 - Prob. 204PCh. 3 - Consider two walls. A and B, with the same surface...Ch. 3 - Prob. 206PCh. 3 - A room at 20C air temperature is losing heat to...Ch. 3 - Prob. 208PCh. 3 - A 1-cm-diameter, 30cm-long fin made of aluminum...Ch. 3 - A hot surface at 80C in air at 20C is to be cooled...Ch. 3 - A cylindrical pin fin of diameter 0.6 cm and...Ch. 3 - A 3-cm-long. 2-nuti x 2-mm rectangular...Ch. 3 - Two finned surfaces with long fins are identical,...Ch. 3 - A 20-cm-diameter hot sphere at 120C is buried in...Ch. 3 - A 25-cm-diameter, 2.4-rn-long vertical cylinder...Ch. 3 - Prob. 216PCh. 3 - The walls of a food storage facility are made of a...Ch. 3 - The equivalent thermal resistance for the thermal...Ch. 3 - Prob. 219PCh. 3 - Prob. 220PCh. 3 - Prob. 221PCh. 3 - The fin efficiency is defined as the ratio of the...Ch. 3 - Prob. 223PCh. 3 - In the United States, building insulation is...Ch. 3 - Prob. 225PCh. 3 - A plane brick wall (k=0.7W/m.K) and is 10 cm...Ch. 3 - The temperature in deep space is close to absolute...Ch. 3 - In the design of electronic components, it is...Ch. 3 - Using cylindrical samples of the same material,...Ch. 3 - Find out about the wall construction of the cabins...Ch. 3 - Prob. 231PCh. 3 - A house with 200-m2 floor space is to be heated...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Faster pleasearrow_forwardThe condenser of a steam power plant operates at a pressure of 7.38 kPa (Tsat = 40°C). Steam at this pressure condenses on the outer surfaces of horizontal pipes through which cooling water circulates. The outer diameter of the pipes is 3 cm, and the outer surfaces of the pipes are maintained at 30°C. Determine the rate of condensation of steam per unit length of a horizontal pipe. The properties of water at the saturation temperature of 40°C are: hfg = 2407 × 10^3J/kg and ρv=0.05 kg/m3. The properties of liquid water at the film temperature: ρl = 994 kg/m3, Cpl =4178 J/kg°C, µl = 0.72 × 10^-3 kg/m.s, kl = 0.623 W/m°C Select one: a. 0.0026 kg/s b. 0.0046 kg/s c. 0.0016 kg/s d. 0.0036 kg/sarrow_forwardWater is boiled at 250°F by a 2-ft-long and 0.5-in diameter nickel-plated electric heating element maintained at 280°F. Determine (a) the boiling heat transfer coefficient, (b) the electric power consumed by the heating element, and (c) the rate of evaporation of water.arrow_forward
- A long 3-mm diameter rod of steel (ρ = 7840 kg/m3, c = 460 J/kgK, k = 43 W/mK)has a uniform initial temperature of 650C. The rod is then suddenly immersed in alarge container of 25C water. The hot rod causes the water immediately surroundingthe rod to boil, giving rise to a heat transfer coefficient of 5600 W/m2K. The boilingstops when the rod reaches a temperature of 100C, at which time the heat transfercoefficient becomes 750 W/m2K. Find the time period during which boiling occursand the total time required for the rod to reach a temperature of 40C. Use acharacteristic length for this problem.arrow_forwardA long 2-in-diameter rod with surface temperature of 200°F is submerged in a bath of fluid. Determine the Grashof and Rayleigh numbers if the fluid is (a) liquid water at 40°F, (b) liquid ammonia at 40°F, (c) engine oil at 50°F, and (d) air at 40°F (1 atm).arrow_forwardWhat is boiling and when does occurs? Explain pool boiling. How does it differ from forced convection boiling?arrow_forward
- The boiling temperature of oxygen at atmospheric pressure at sea level (1 atm) is -183ºC. Therefore, oxygen is used in low temperature scientific studies since the temperature of liquid oxygen in a tank open to the atmosphere remains constant at -183ºC until the liquid oxygen in the tank is depleted. Any heat transfer to the tank results in the evaporation of some liquid oxygen, which has a heat of vaporization of 213 kJ/kg and a density of 1140 kg/m3at 1 atm. Consider a 4 m diameter spherical tank initially filled with liquid oxygen at 1 atm and -183ºC. The tank is exosed to 20ºC ambient ait with a heat transfer coefficient of 25 W/m2. ºC. The temperature of the thin-shelled spherical tank is observed to be almost the same as the temperature of the oxygen inside. Disregarding any radiation heat exchange, determine the rate of evaporation of the liquid oxygen in the tank as a result of the heat transfer from the ambient airarrow_forwardIn boiling water at 1 atm pressure outside a stainless-steel tube with a surface temperature of 410F, the heat-transfer coefficient h in the absence of radiation is 32 Btu/h*ft^2*F. If the emissivity of the stainless steel is 0.8, will radiation significantly augment the rate of boiling (e.g., by more than 5 percent)? Assume that the vapor film is transparent to radiation and the boiling liquid is opaque.arrow_forwardThe boiling temperature of nitrogen at atmospheric pressure at sea level (1 atm) is -196°C. Therefore, nitrogen is commonly used in low temperature scientific studies since the temperature of liquid nitrogen in a tank open to the atmosphere will remain constant at -196°C until the liquid nitrogen in the tank is depleted. Any heat transfer to the tank will result in the evaporation of some liquid nitrogen, which has a heat of vaporization of 198 kJ/kg and a density of 810 kg/m3 at 1 atm. Consider a 3-m-diameter spherical tank initially filled with liquid nitrogen at 1 atm and 196°C. The tank is exposed to 22°C ambient air with a heat transfer coefficient of 22 W/m2 · °C. The temperature of the thin-shelled spherical tank is observed to be almost the same as the temperature of the nitrogen inside. Disregarding any radiation heat exchange, determine the rate of evaporation of the liquid nitrogen in the tank as a result of the heat transfer from the ambient air in kg/sec. Answer in…arrow_forward
- A copper rod, an aluminum rod, and a brass, each 6.00 m length and 1.00 cm diameter, are placed end to end with the aluminum rod between the other two. The free end of the copper rod is maintained at water’s boiling point, and the free end of the brass rod is maintained at water’s freezing point. If T1 and T2 are steady-state temperature copper-aluminum junction and aluminum-brass junction respectively. Where TC is temp at freezing point of water and TH is temp at boiling point of water. Show that the steady-state temperature for (a) the aluminum-brass junction is:arrow_forwardA long steel rod 0.305 m in diameter is initially at a temperature of 588 K. It is immersed in an oil bath maintained at 311 K. The surface convective coefficient is 125 W/m2 -K. Calculate the temperature at the center of the rod after 1 h. The average physical properties of the steel are k = 38 W/m-K and α = 0.0381 m2/h.arrow_forwardInside a condenser, there is a bank of seven copper tubes with cooling water flowing in them. Steam condenses at a rate of 0.6 kg/s on the outer surfaces of the tubes that are at a constant temperature of 68°C. Each copper tube is 5-m long and has an inner diameter of 25 mm. Cooling water enters each tube at 5°C and exits at 60°C. Determine the average heat transfer coefficient of the cooling water flowing inside each tube and the cooling water mean velocity needed to achieve the indicated heat transfer rate in the condenser.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY