Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 97CP
To determine
The thickness of insulation for windy and calm days.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2 A solar collector with an area of 1.5 m² is installed on the rooftop of a heuse. Assume that the radiative energy amiving from the sun is 1000 Wm, The
collecter reflects 10% of the energy arriving on its surface. Also, the collector is not perfectly insulated, and losses occur. The collector has a heat transfer
coetficient h of 2 Wm ?K1, The side areas of the collector are assumed to be negligible. The ambient temperature is 20 C and the collector is assumed to
be ut a temperature of 50 °C. Consider thut this temperature is constant throughout the whole collector. The collector is assamed to behave like a black
body.
a) What is the power output of the collector?
bị What percentage of the total losses is caused by rudiation?
13
H.W1
Consider a person standing in a room. Determine the total rate of heat transfer from
this person if the exposed surface area and temperature are 1.6m² and 29°C,
respectively.
Assume that the convection heat transfer coefficient is 6W/m².K and the emissivity
of a person is 0.95.
The air temperature in the room is maintained at 22°C at all times of the year.
In summer, the wall and ceiling temperatures are observed to be 25°C, while in
winter, they are 10°C.
Ans:
Qrotal =104.4 W In Summer
Qrotal =231.3 W In Winter
Quiz: A double-pane window consists of two 3 mm thick layers of glass separated
by a 12 mm wide stagnant air space. For specified indoors and outdoors
temperatures. 1. Determined rate of heat loss through the window and 2. The inner
surface temperature of the window.
kalass = 0.78 W/m-°C and k stagnant space = 0.026,
The area of the window and the individual resistances are A=(1.2 m)x (2 m) = 2.4 m²
Glass
Glass
Stagnant space
Toi= 24
h = 10 w/m?.c
To2- -5 c
h2 25 w/m2.c
12 mm
3 mm
mm
Chapter 3 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 3 - Consider heat conduction through a wall of...Ch. 3 - Consider heat conduction through a plane wall....Ch. 3 - What does the thermal resistance of a medium...Ch. 3 - Can we defme the convection resistance for a unit...Ch. 3 - Consider steady heat transfer through the wall of...Ch. 3 - How is the combined heat transfer coefficient...Ch. 3 - Why are the convection and the radiation...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Someone comments that a microwave oven can be...Ch. 3 - Consider two cold canned drinks, one wrapped in a...
Ch. 3 - The bottom of a pan is made of a 4-mm-thick...Ch. 3 - Consider a surface of area A at which the...Ch. 3 - How does the thermal resistance network associated...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Consider a window glass consisting of two...Ch. 3 - Prob. 16PCh. 3 - Consider a person standing in a room at 20C with...Ch. 3 - Consider an electrically heated brick house...Ch. 3 - A12-cm18-cm circuit board houses on its surface...Ch. 3 - Water is boiling in a 25-cm-diameter aluminum pan...Ch. 3 - A cylindrical resistor element on a circuit board...Ch. 3 - Prob. 22PCh. 3 - A1.0m1.5m double-pane window consists of two...Ch. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28EPCh. 3 - To defog the rear window of an automobile, a very...Ch. 3 - A transparent film is to be bonded onto the top...Ch. 3 - To defrost ice accumulated on the outer surface of...Ch. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Heat is to be conducted along a circuit board that...Ch. 3 - Prob. 38EPCh. 3 - Consider a house that has a 10m20-m base and a...Ch. 3 - Prob. 40EPCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - What is thermal contact resistance? How is it...Ch. 3 - Will the thermal contact resistance be greater for...Ch. 3 - Explain how the thermal contact resistance can be...Ch. 3 - A waII consists of two layers of insulation...Ch. 3 - Prob. 47CPCh. 3 - Consider two surfaces pressed against each other....Ch. 3 - Prob. 49PCh. 3 - Two 5-cm-diameter, 15-cm-long aluminum bars...Ch. 3 - Prob. 51PCh. 3 - Two identical aluminum plates with thickness of 30...Ch. 3 - A tvolayer wall is made of two metal plates, with...Ch. 3 - An aluminum plate and a stainless steel plate are...Ch. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - What are the two approaches used in the...Ch. 3 - The thermal resistance networks can also be used...Ch. 3 - When plotting the thermal resistance network...Ch. 3 - A 10-cm-thick vall is to be constructed with...Ch. 3 - Prob. 62EPCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - A 12-m-long and 5-m-high wall is constructed of...Ch. 3 - Prob. 70EPCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - What is an infinitely long cylinder? When is it...Ch. 3 - Can the thermal resistance concept be used for a...Ch. 3 - Consider a short cylinder whose top and bottom...Ch. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Superheated steam at an average temperature 20C is...Ch. 3 - Prob. 80EPCh. 3 - Prob. 81EPCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 85PCh. 3 - Prob. 86EPCh. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Liquid hydrogen is flowing through an insulated...Ch. 3 - Exposure to high concentrations of gaseous ammonia...Ch. 3 - A mixture of chemicals is flowing in a pipe...Ch. 3 - Ice slurry is being transported in a pipe...Ch. 3 - Prob. 93PCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - What is the critical radius of insulation? How is...Ch. 3 - Prob. 97CPCh. 3 - Prob. 98CPCh. 3 - Prob. 99CPCh. 3 - A pipe is insulated such that the outer radius of...Ch. 3 - A 0.083-in-diameter electrical wire at 90F is...Ch. 3 - Repeat Prob. 3-109E, assuming a thermal contact...Ch. 3 - Prob. 103PCh. 3 - Prob. 104PCh. 3 - Hot air is to be cooled as it is forced to flow...Ch. 3 - Prob. 106CPCh. 3 - Prob. 107CPCh. 3 - The fins attached to a surface are determined to...Ch. 3 - Explain how the fins enhance heat transfer from a...Ch. 3 - How does the overall effectiveness of a finned...Ch. 3 - Hot water is to be cooled as it flows through the...Ch. 3 - Consider two finned surfaces that are identical...Ch. 3 - The heat transfer surface area of a fin is equal...Ch. 3 - Does the (a) efficiency and (b) effectiveness of a...Ch. 3 - Two pin fins are identical, except that the...Ch. 3 - Two plate fins of constant rectangular cross...Ch. 3 - Two finned surfaces are identical, except that the...Ch. 3 - Obtain a relation for the fin efficiency for a fin...Ch. 3 - Prob. 119PCh. 3 - Consider a very long rectangular fin attached to a...Ch. 3 - Prob. 121PCh. 3 - Prob. 122EPCh. 3 - Prob. 123EPCh. 3 - Prob. 124PCh. 3 - Prob. 125PCh. 3 - Prob. 126PCh. 3 - Prob. 127PCh. 3 - Prob. 128PCh. 3 - Prob. 129PCh. 3 - Prob. 130PCh. 3 - Prob. 131PCh. 3 - Prob. 132PCh. 3 - Prob. 133PCh. 3 - Prob. 134PCh. 3 - The human body is adaptable to extreme climatic...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Prob. 138PCh. 3 - What is a conduction shape factor? How is it...Ch. 3 - What is the value of conduction shape factors in...Ch. 3 - Prob. 141PCh. 3 - A thin-walled cylindrical container is placed...Ch. 3 - Prob. 143PCh. 3 - Prob. 144PCh. 3 - Prob. 145PCh. 3 - Prob. 146EPCh. 3 - Prob. 147PCh. 3 - Prob. 148PCh. 3 - Prob. 149PCh. 3 - Prob. 150PCh. 3 - Prob. 151PCh. 3 - Prob. 152PCh. 3 - Consider a house with a flat roof whose outer...Ch. 3 - Prob. 154PCh. 3 - Radioactive material, stored in a spherical vessel...Ch. 3 - What is the R-value of a wall? How does it differ...Ch. 3 - What is effective emissivity for a plane-parallel...Ch. 3 - Prob. 158CPCh. 3 - What is a radiant barrier? What kinds of materials...Ch. 3 - Consider a house whose attic space is ventilated...Ch. 3 - Prob. 161PCh. 3 - Prob. 162PCh. 3 - Prob. 163PCh. 3 - Prob. 164PCh. 3 - Prob. 165PCh. 3 - Prob. 166PCh. 3 - Determine the winter R-value and the U-factor of a...Ch. 3 - The overall heat transfer coefficient (the...Ch. 3 - Prob. 169EPCh. 3 - Determine the summer and winter R-values. in m2 ....Ch. 3 - The overall heat transfer coefficient of a wall is...Ch. 3 - Two homes are identical, except that the walls of...Ch. 3 - Prob. 173PCh. 3 - Consider two identical people each generating 60 V...Ch. 3 - Cold conditioned air at 12C is flowing inside a...Ch. 3 - Hot water is flowing at an average velocity of 1.5...Ch. 3 - Prob. 177PCh. 3 - Prob. 178PCh. 3 - Prob. 179PCh. 3 - Prob. 180PCh. 3 - Prob. 181PCh. 3 - Prob. 182PCh. 3 - Prob. 183PCh. 3 - Prob. 184PCh. 3 - Prob. 185PCh. 3 - A total of 10 rectangular aluminum fins...Ch. 3 - Prob. 187PCh. 3 - A plane wall surface at 200C is to be cooled with...Ch. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - A 0.6-rn-diameter, 1.9-rn-long cylindrical tank...Ch. 3 - Prob. 194PCh. 3 - Prob. 195PCh. 3 - A thin-walled spherical tank is buried in the...Ch. 3 - Heat is lost at a rate of 275 W per m2 area of a 1...Ch. 3 - Prob. 198PCh. 3 - Heat is generated steadily in a 3-cm-diameter...Ch. 3 - Prob. 200PCh. 3 - Prob. 201PCh. 3 - Prob. 202PCh. 3 - Prob. 203PCh. 3 - Prob. 204PCh. 3 - Consider two walls. A and B, with the same surface...Ch. 3 - Prob. 206PCh. 3 - A room at 20C air temperature is losing heat to...Ch. 3 - Prob. 208PCh. 3 - A 1-cm-diameter, 30cm-long fin made of aluminum...Ch. 3 - A hot surface at 80C in air at 20C is to be cooled...Ch. 3 - A cylindrical pin fin of diameter 0.6 cm and...Ch. 3 - A 3-cm-long. 2-nuti x 2-mm rectangular...Ch. 3 - Two finned surfaces with long fins are identical,...Ch. 3 - A 20-cm-diameter hot sphere at 120C is buried in...Ch. 3 - A 25-cm-diameter, 2.4-rn-long vertical cylinder...Ch. 3 - Prob. 216PCh. 3 - The walls of a food storage facility are made of a...Ch. 3 - The equivalent thermal resistance for the thermal...Ch. 3 - Prob. 219PCh. 3 - Prob. 220PCh. 3 - Prob. 221PCh. 3 - The fin efficiency is defined as the ratio of the...Ch. 3 - Prob. 223PCh. 3 - In the United States, building insulation is...Ch. 3 - Prob. 225PCh. 3 - A plane brick wall (k=0.7W/m.K) and is 10 cm...Ch. 3 - The temperature in deep space is close to absolute...Ch. 3 - In the design of electronic components, it is...Ch. 3 - Using cylindrical samples of the same material,...Ch. 3 - Find out about the wall construction of the cabins...Ch. 3 - Prob. 231PCh. 3 - A house with 200-m2 floor space is to be heated...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Required information Heat dissipated from an engine in operation can cause hot spots on its surface. If the outer surface of an engine is situated in a place where oil leakage is possible, then when leaked oil comes in contact with hot spots above the oil's autoignition temperature, it can ignite spontaneously. Consider an engine cover that is made of a stainless-steel plate with a thickness of 1 cm and a thermal conductivity of 14 W/m.K. The stainless-steel plate is covered with a 5-mm-thick insulation (k=0.5 W/m.K). The inner surface of the engine cover is exposed to hot air at 350°C with a convection heat transfer coefficient of 5 W/m².K as shown in the figure. The 2-m-long engine outer surface is cooled by air blowing in parallel over it at 7 m/s in an environment where the ambient air is at 60°C. To prevent fire hazard in the event of oil leak on the engine cover, the engine cover surface should be kept below 180°C. It has been determined that the 5- mm-thick insulation layer is…arrow_forwardThe Resistance (R) of an enclosure of surface area of 8,000sf is 20. What is the amount of heat required to heat the enclosure during a day where the average daily temperature is 55*F?arrow_forwardheat transfer questionarrow_forward
- Why does heat transfer increase initially with radius of insulation and then decrease beyond critical radius? Explain in details.arrow_forwardWe often think of pollution in terms of smog or trash in the ocean. Give an example of thermal pollution, discuss its impact and possible mitigation.arrow_forwardA 15 cm bare oxidized steel (Ɛ = 0.79) pipe (16.8 cm O.D.) carrying steam at a high temperature is enclosed in a 30 x 30 cm red brick (Ɛ = 0.80) conduit having wall temperatures somewhat lower than the pipe diameter. What percentage of the heat lost by radiation from the pipe would be saved if the conduit walls were painted with aluminum paint (Ɛ = 0.52)arrow_forward
- H.W: 10-02-2021: The exterior wall of a building consists of 100 mm thick face brick (k = 0.9 Wm¯'K'), 40 mm thick polystyrene insulating board (k 0.036 Wm'K¯), 125 mm thick concrete block (k = 1.8 Wm¯'K') and 15 mm thick interior gypsum board (k = 0.18 Wm K). The inside and outside convective heat transfer coefficients are 6.5 Wm K and 22.5 Wm K respectively. The outside air temperature is -5°C and the inside air temperature is 20°C. The wall is 3 m high and 15 m long. Calculate (i) the rate of heat loss through the wall,arrow_forwardSoru 1 A steel pipe (k=43 W/m.K) has inner and outer diameters are 5 cm and 6 cm, Henüz respectively. The pipe is covered with high temperature insulation material. Thermal cevaplanmadı conductivity and thickness of the insulation are 0.11 W/m.K and 0.012 m, respectively. Steam at 115,82°C flows in the pipe. The unit thermal resistance at the inner wall is 0.0026 m2.K/W. The heat transfer coefficient at the outer surface is 17 W/m2.K. The 35,00 üzerinden işaretlenmiş P Soruyu işaretle ambient temperature is 55,54°C. Estimate the rate of heat loss per unit length (W/m). Yanıt:arrow_forwardWhat is heat transfer coefficient?arrow_forward
- Biot number signifies (a) The ratio of heat conducted to heat convected (b) The ratio of heat convected to heat conducted (c) The ratio of external convective resistance to internal conductive resistance (d) The ratio of internal conductive resistance to external convective resistancearrow_forwardQuestion 6 1 pts A composite wall constructed of 2.5cm of steel (k-60.5 W/m-K) and 5.0 cm of aluminum (k177W/m-K) separates two liquids. The liquid on the steel side has a film coefficient of 15W/m²-K and a temperature of 400degC. The liquid on the steel side has a film coefficient of 30W/m² and a temperature of 100degC. Assume steady state conditions, what is the temperature at the steel-aluminum interface in deg Carrow_forwardHello, Hoping for your expertise in this question. Thank youarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license