Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 17P
Consider a person standing in a room at 20°C with an exposed surface area of 1.7 m2. The deep body temperature of the human body is 37°C, and the thermal conductivity of the human tissue near the skin is about 0.3 WmK. The body is losing heat at a rate of 150 W by natural convection and I radiation to the surroundings. Taking the body temperature 0.5 cm beneath the skin to be 37°C, determine the skin temperature of the person.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a person standing in a roomn at 20°C with an exposed surface area of 1.5 m2. The deep
body temperature of the human body is 37°C, and the thermal conductivity of the human tissue near
the skin is about 0.3 W/m-°C. The body is losing heat at a rate of 150 W by natural convection and
radiation to the surroundings. Taking the body temperature 0.5 cm beneath the skin to be 37°C,
determine the skin temperature of the person.
°C
Consider a person standing in a room at 18°C. Determine the total rate of heat transfer from this
person if the exposed surface area and the skin temperature of the person are 1.7 m2 and 32°C.
respectively, and the convection heat transfer coefficient is 5 W/m2-K. Take the emissivity of the
skin and the clothes to be 0.9, and assume the temperature of the inner surfaces of the room to
be the same as the air temperature.
A glass window in a storefront has an are of 12m2 and a thickness of 1 cm. The thermal conductivity of the glass is 0.8 W/m-oC. On the cold day, outside surface temperature of the glass is -1oC and the inside surface temperature is 3 oC. Determine the temperature at a plane midway between the inside and outside glass surfaces.
Chapter 3 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 3 - Consider heat conduction through a wall of...Ch. 3 - Consider heat conduction through a plane wall....Ch. 3 - What does the thermal resistance of a medium...Ch. 3 - Can we defme the convection resistance for a unit...Ch. 3 - Consider steady heat transfer through the wall of...Ch. 3 - How is the combined heat transfer coefficient...Ch. 3 - Why are the convection and the radiation...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Someone comments that a microwave oven can be...Ch. 3 - Consider two cold canned drinks, one wrapped in a...
Ch. 3 - The bottom of a pan is made of a 4-mm-thick...Ch. 3 - Consider a surface of area A at which the...Ch. 3 - How does the thermal resistance network associated...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Consider a window glass consisting of two...Ch. 3 - Prob. 16PCh. 3 - Consider a person standing in a room at 20C with...Ch. 3 - Consider an electrically heated brick house...Ch. 3 - A12-cm18-cm circuit board houses on its surface...Ch. 3 - Water is boiling in a 25-cm-diameter aluminum pan...Ch. 3 - A cylindrical resistor element on a circuit board...Ch. 3 - Prob. 22PCh. 3 - A1.0m1.5m double-pane window consists of two...Ch. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28EPCh. 3 - To defog the rear window of an automobile, a very...Ch. 3 - A transparent film is to be bonded onto the top...Ch. 3 - To defrost ice accumulated on the outer surface of...Ch. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Heat is to be conducted along a circuit board that...Ch. 3 - Prob. 38EPCh. 3 - Consider a house that has a 10m20-m base and a...Ch. 3 - Prob. 40EPCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - What is thermal contact resistance? How is it...Ch. 3 - Will the thermal contact resistance be greater for...Ch. 3 - Explain how the thermal contact resistance can be...Ch. 3 - A waII consists of two layers of insulation...Ch. 3 - Prob. 47CPCh. 3 - Consider two surfaces pressed against each other....Ch. 3 - Prob. 49PCh. 3 - Two 5-cm-diameter, 15-cm-long aluminum bars...Ch. 3 - Prob. 51PCh. 3 - Two identical aluminum plates with thickness of 30...Ch. 3 - A tvolayer wall is made of two metal plates, with...Ch. 3 - An aluminum plate and a stainless steel plate are...Ch. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - What are the two approaches used in the...Ch. 3 - The thermal resistance networks can also be used...Ch. 3 - When plotting the thermal resistance network...Ch. 3 - A 10-cm-thick vall is to be constructed with...Ch. 3 - Prob. 62EPCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - A 12-m-long and 5-m-high wall is constructed of...Ch. 3 - Prob. 70EPCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - What is an infinitely long cylinder? When is it...Ch. 3 - Can the thermal resistance concept be used for a...Ch. 3 - Consider a short cylinder whose top and bottom...Ch. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Superheated steam at an average temperature 20C is...Ch. 3 - Prob. 80EPCh. 3 - Prob. 81EPCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 85PCh. 3 - Prob. 86EPCh. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Liquid hydrogen is flowing through an insulated...Ch. 3 - Exposure to high concentrations of gaseous ammonia...Ch. 3 - A mixture of chemicals is flowing in a pipe...Ch. 3 - Ice slurry is being transported in a pipe...Ch. 3 - Prob. 93PCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - What is the critical radius of insulation? How is...Ch. 3 - Prob. 97CPCh. 3 - Prob. 98CPCh. 3 - Prob. 99CPCh. 3 - A pipe is insulated such that the outer radius of...Ch. 3 - A 0.083-in-diameter electrical wire at 90F is...Ch. 3 - Repeat Prob. 3-109E, assuming a thermal contact...Ch. 3 - Prob. 103PCh. 3 - Prob. 104PCh. 3 - Hot air is to be cooled as it is forced to flow...Ch. 3 - Prob. 106CPCh. 3 - Prob. 107CPCh. 3 - The fins attached to a surface are determined to...Ch. 3 - Explain how the fins enhance heat transfer from a...Ch. 3 - How does the overall effectiveness of a finned...Ch. 3 - Hot water is to be cooled as it flows through the...Ch. 3 - Consider two finned surfaces that are identical...Ch. 3 - The heat transfer surface area of a fin is equal...Ch. 3 - Does the (a) efficiency and (b) effectiveness of a...Ch. 3 - Two pin fins are identical, except that the...Ch. 3 - Two plate fins of constant rectangular cross...Ch. 3 - Two finned surfaces are identical, except that the...Ch. 3 - Obtain a relation for the fin efficiency for a fin...Ch. 3 - Prob. 119PCh. 3 - Consider a very long rectangular fin attached to a...Ch. 3 - Prob. 121PCh. 3 - Prob. 122EPCh. 3 - Prob. 123EPCh. 3 - Prob. 124PCh. 3 - Prob. 125PCh. 3 - Prob. 126PCh. 3 - Prob. 127PCh. 3 - Prob. 128PCh. 3 - Prob. 129PCh. 3 - Prob. 130PCh. 3 - Prob. 131PCh. 3 - Prob. 132PCh. 3 - Prob. 133PCh. 3 - Prob. 134PCh. 3 - The human body is adaptable to extreme climatic...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Prob. 138PCh. 3 - What is a conduction shape factor? How is it...Ch. 3 - What is the value of conduction shape factors in...Ch. 3 - Prob. 141PCh. 3 - A thin-walled cylindrical container is placed...Ch. 3 - Prob. 143PCh. 3 - Prob. 144PCh. 3 - Prob. 145PCh. 3 - Prob. 146EPCh. 3 - Prob. 147PCh. 3 - Prob. 148PCh. 3 - Prob. 149PCh. 3 - Prob. 150PCh. 3 - Prob. 151PCh. 3 - Prob. 152PCh. 3 - Consider a house with a flat roof whose outer...Ch. 3 - Prob. 154PCh. 3 - Radioactive material, stored in a spherical vessel...Ch. 3 - What is the R-value of a wall? How does it differ...Ch. 3 - What is effective emissivity for a plane-parallel...Ch. 3 - Prob. 158CPCh. 3 - What is a radiant barrier? What kinds of materials...Ch. 3 - Consider a house whose attic space is ventilated...Ch. 3 - Prob. 161PCh. 3 - Prob. 162PCh. 3 - Prob. 163PCh. 3 - Prob. 164PCh. 3 - Prob. 165PCh. 3 - Prob. 166PCh. 3 - Determine the winter R-value and the U-factor of a...Ch. 3 - The overall heat transfer coefficient (the...Ch. 3 - Prob. 169EPCh. 3 - Determine the summer and winter R-values. in m2 ....Ch. 3 - The overall heat transfer coefficient of a wall is...Ch. 3 - Two homes are identical, except that the walls of...Ch. 3 - Prob. 173PCh. 3 - Consider two identical people each generating 60 V...Ch. 3 - Cold conditioned air at 12C is flowing inside a...Ch. 3 - Hot water is flowing at an average velocity of 1.5...Ch. 3 - Prob. 177PCh. 3 - Prob. 178PCh. 3 - Prob. 179PCh. 3 - Prob. 180PCh. 3 - Prob. 181PCh. 3 - Prob. 182PCh. 3 - Prob. 183PCh. 3 - Prob. 184PCh. 3 - Prob. 185PCh. 3 - A total of 10 rectangular aluminum fins...Ch. 3 - Prob. 187PCh. 3 - A plane wall surface at 200C is to be cooled with...Ch. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - A 0.6-rn-diameter, 1.9-rn-long cylindrical tank...Ch. 3 - Prob. 194PCh. 3 - Prob. 195PCh. 3 - A thin-walled spherical tank is buried in the...Ch. 3 - Heat is lost at a rate of 275 W per m2 area of a 1...Ch. 3 - Prob. 198PCh. 3 - Heat is generated steadily in a 3-cm-diameter...Ch. 3 - Prob. 200PCh. 3 - Prob. 201PCh. 3 - Prob. 202PCh. 3 - Prob. 203PCh. 3 - Prob. 204PCh. 3 - Consider two walls. A and B, with the same surface...Ch. 3 - Prob. 206PCh. 3 - A room at 20C air temperature is losing heat to...Ch. 3 - Prob. 208PCh. 3 - A 1-cm-diameter, 30cm-long fin made of aluminum...Ch. 3 - A hot surface at 80C in air at 20C is to be cooled...Ch. 3 - A cylindrical pin fin of diameter 0.6 cm and...Ch. 3 - A 3-cm-long. 2-nuti x 2-mm rectangular...Ch. 3 - Two finned surfaces with long fins are identical,...Ch. 3 - A 20-cm-diameter hot sphere at 120C is buried in...Ch. 3 - A 25-cm-diameter, 2.4-rn-long vertical cylinder...Ch. 3 - Prob. 216PCh. 3 - The walls of a food storage facility are made of a...Ch. 3 - The equivalent thermal resistance for the thermal...Ch. 3 - Prob. 219PCh. 3 - Prob. 220PCh. 3 - Prob. 221PCh. 3 - The fin efficiency is defined as the ratio of the...Ch. 3 - Prob. 223PCh. 3 - In the United States, building insulation is...Ch. 3 - Prob. 225PCh. 3 - A plane brick wall (k=0.7W/m.K) and is 10 cm...Ch. 3 - The temperature in deep space is close to absolute...Ch. 3 - In the design of electronic components, it is...Ch. 3 - Using cylindrical samples of the same material,...Ch. 3 - Find out about the wall construction of the cabins...Ch. 3 - Prob. 231PCh. 3 - A house with 200-m2 floor space is to be heated...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.29 A spherical interplanetary probe with a 30-cm diameter contains electronic equipment that dissipates 100 W. If the probe surface has an emissivity of 0.8, what is its surface temperature in outer space? State your assumptions in the calculations.arrow_forwardA person stands in a breezy room whose temperature is 20 °C. The emissivity of the person is 0.35. Determine the total rate of heat transfer from this person if the exposed surface area and the average surface temperature of the person are 1.6 m2 and 29 °C respectively. Take the convection heat transfer coefficient to be 6.5 W/m2/K and that the surrounding wall of the room is at a temperature of 20 oC. Select one: A 123.7 W B. 86.4 W C. 151.7 W D. 100.5 W E 43.0 Warrow_forwardA glass window inside storefront has an are of 12m2 and a thickness of 1 cm. The thermal conductivity of the glass is 0.8 W/m-oC. On the cold day, outside surface temperature of the glass is -1oC and the inside surface temperature is 3 oC. Determine the temperature at a plane midway between the inside and outside glass surfaces.arrow_forward
- Determine the steady rate of heat transfer (in W) through the glass window. The room is maintained at 24°C while the temperature of the outdoors is –5°C.arrow_forwardConsider a furnace (as a plane wall) which has a thickness of 15 cm and a surface area of 1 m?. The inside surface of the furnace wall (the hot left side of the wall) is at temperature T1. The furnace wall is made of brick with thermal conductivity of 1.198 W/m.K. The outside surface of the furnace wall (the right side of the wall) has a surface emissivity of 0.8 and is maintained at T2=101 °C and subject to air at 25 °C with convection heat transfer coefficient of 20 W/m?.K. The surroundings temperature at the outside of the furnace wall is at 25 °C. Required: Draw a clear and consistent schematic of the problem and label the operating conditions on the schematic. Perform systematic analysis, state your assumptions and justify the equation used and determine the following (circle your final answers): (i) The rate of heat transfer by convection (in W); (ii) The rate of heat radiation (in W); (iii) The surface temperature of the furnace wall T1 (in °C); (iv) The rate of conduction heat…arrow_forwardTo warm up some milk in a thin-walled glass cylindrical container whose diameter is 6 cm. The height of the milk in the glass is 7 cm. The milk container is placed into a large pan filled with hot water at 60°C. The milk is stirred constantly, so that its temperature is uniform at all times. If the heat transfer coefficient between the water and the glass is 120 W/m2.°C, determine how long it will take for the milk to warm up from 3°C to 38°C. Take the properties of the milk to be the same as those of water. Can the milk in this case be treated as a lumped system? Use the lumped system analysis to solve the problem. The properties of water and milk at 20°C are, k = 0.607 W/m.°C,p=998 kg/m', and C, = 4.182 kJ/kg.°C. Answer: 5.8 min. ملاحظه: تكون هنا قيمة (0.1 < Bi( ويفترض لايطبق التحليل الكتلي , ولكن استخدم نفس التحليل والمعادلات في المحاضرة وكذلك في المثال لان الحليب يخلط باستمرار ولذلك تكون درجة حرارته منتظمه و متغيره مع الزمن لانه يكتسب حراره من الماء ويسخن وترتفع درجة حرارته مع…arrow_forward
- The wall of a furnace has a thickness of 5 cm and thermal conductivity of 0.7 W/m-°C. The inside surface is heated by convection with a hot gas at 402°C and a heat transfer coefficient of 37 W/m-°C. The outside surface has an emissivity of 0.8 and is exposed to air at 27°C with a heat transfer coefficient of 20 W/m-°C. Assume that the furnace is inside a large room with walls, floor and ceiling at 27°C. Show the thermal circuit and determine the heat flux through the furnace wall.arrow_forwardA 2-m-long, 4-cm-diameter electrical wire extends across a room at 20°C, as Shown in Fig. below. Heat is generated in the wire due to resistance heating, and the surface temperature of the wire is measured to be 252°C in steady operation. Also, the voltage drop and electric current through the wire are measured to be 80 V and 2 A, respectively. Heat loss transfer by radiation was 40 W from the surface of the wire. Heat transfer coefficient for heat 20 C transfer between the outer surface of the wire and the air in the room. 2 80 V T 252 If the heat generation by electrical wire increased up to 200 W, what is the surface temperature of the wire, assuming no change heat transfer coefficient?arrow_forwardConsider a person standing in a room kept at 22°C at all times. Your house It has been observed that the inner surfaces of the walls, floor and ceiling are at an average temperature of 15°C. If this person's exposed surface area is 1.4 m2 and if the average external surface temperature is 30°C, this person and the surrounding surfaces Determine the radiation and heat transfer rate between One's emissivity, the Stefan-Boltzmann constant a=5,67x10 -8 W/m 2 K 4arrow_forward
- The wall of a house is 4-meter-high and 15 -meter- wide. The wall is constructed with a 9-cm thick outer layer of brick and a 5-cm inner layer of insulating material. On a cold day, the outer surface temperature of the wall is -5°C while the inner surface temperature is 24°C. The thermal conductivity of the brick is 0.80 W/m-K, while the thermal conductivity of the insulation is 0.03 W/m-K . both inner and outer and outer has transfeer coefficeint of 20 W/m2- K a. What is the total thermal resistance of the wal? b. What is the rate of heat loss through the walarrow_forwardkindly help me with this question. Thank you, I am having a hard time solving thisarrow_forwardA cylindrical resistance heater is placed horizontally in air. The outer surface temperature of the resistance wire is to be determined. The environment temperature and the power of the resistance heater is . The length and the diameter of the resistance heater is 0.75 m and 0.5 cm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license