Consider a house with a flat roof whose outer dimensions are 12 m × 12 m . and The outer walls of the house are 6 in high. The walls and the roof of the house are made of 20-cm-thick concrete ( k = 0.75 W/m .K ) . The temperatures of the inner and outer surfaces of the house are 15°C and 3°C, respectively. Accounting for the effects of the edges of adjoining surfaces. determine the rate of heat loss from the house through its walls and the roof. What is the error involved in ignoring the effects of the edges and corners and treating the roof as a 12 m × 12 m surface and the walls as 6 m × 12 m surfaces for simplicity?
Consider a house with a flat roof whose outer dimensions are 12 m × 12 m . and The outer walls of the house are 6 in high. The walls and the roof of the house are made of 20-cm-thick concrete ( k = 0.75 W/m .K ) . The temperatures of the inner and outer surfaces of the house are 15°C and 3°C, respectively. Accounting for the effects of the edges of adjoining surfaces. determine the rate of heat loss from the house through its walls and the roof. What is the error involved in ignoring the effects of the edges and corners and treating the roof as a 12 m × 12 m surface and the walls as 6 m × 12 m surfaces for simplicity?
Solution Summary: The author explains the Fourier Law of heat conduction and the heat transfer rate through the walls and roof of the house.
Consider a house with a flat roof whose outer dimensions are
12 m × 12 m
.
and The outer walls of the house are 6 in high. The walls and the roof of the house are made of 20-cm-thick concrete
(
k
=
0.75
W/m
.K
)
. The temperatures of the inner and outer surfaces of the house are 15°C and 3°C, respectively. Accounting for the effects of the edges of adjoining surfaces. determine the rate of heat loss from the house through its walls and the roof. What is the error involved in ignoring the effects of the edges and corners and treating the roof as a
12 m × 12 m
surface and the walls as
6 m × 12 m
surfaces for simplicity?
Experiment
تكنولوجيا السيارات
- Internal Forced convenction Heat transfer Air Flow through Rectangular Duct.
objective: Study the convection heat transfer of
air
flow through rectangular duct.
Valve Th
Top Dead Centre
Exhaust Valve Class
CP.
N; ~
RIVavg Ti
K
2.11
Te To
18.8 21.3 45.8
Nath Ne
Pre
Calculations:.
Q = m cp (Te-Ti)
m: Varg Ac Acca*b
Q=hexp As (Ts-Tm)
2
2.61
18.5 20.846.3
Tm = Te-Ti =
25
AS-PL
= (a+b)*2*L
Nu exp=
Re-Vavy D
heep Dh
k
2ab
a+b
Nu
Dh
the-
(TS-Tm)
Ts. Tmy Name / Nu exp
Naxe
بب ارتدان
العشري
Procedure:1- Cartesian system, 2D3D,type of support2- Free body diagram3 - Find the support reactions4- If you find a negativenumber then flip the force5- Find the internal force3D∑Fx=0∑Fy=0∑Fz=0∑Mx=0∑My=0\Sigma Mz=02D\Sigma Fx=0\Sigma Fy=0\Sigma Mz=05- Use method of sectionand cut the elementwhere you want to find
Procedure:1- Cartesian system, 2D3D,type of support2- Free body diagram3 - Find the support reactions4- If you find a negativenumber then flip the force5- Find the internal force3D∑Fx=0∑Fy=0∑Fz=0∑Mx=0∑My=0\Sigma Mz=02D\Sigma Fx=0\Sigma Fy=0\Sigma Mz=05- Use method of sectionand cut the elementwhere you want to findthe internal force andkeep either side of the
Chapter 3 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.