Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 48CP
Consider two surfaces pressed against each other. Now the air at the interface is evacuated. Will the thermal contact resistance at the interface increase or decrease as a result?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(b) A hydrogen gas cylinder is situated in the cylinder cage. The cylinder wall is
constructed from 15.5 mm carbon fiber (kcp = 0.75 W mK-¹). The outside of the
cylinder is lagged with an inner 10 mm layer of ceramic insulation (kc =
0.08 W mK-¹) and an outer 80 mm layer of fiberglass insulation (kp = 0.15 W mK-¹).
The temperature on the hydrogen gas is 150 °C and the temperature of the cylinder
cage is 45 °C. Given that the walls of the cylinder can be assumed to be flat and
neglecting the contribution of radiation, calculate:
(i) the heat flux per square meter of the gas cylinder wall
(ii) the temperature at the interface between the fibreglass and the ceramic
insulation.
1.1
A steam pipe, made of copper, has an inside diameter of 5 cm and an outside diameter of 6.2 cm. To reduce thermal loss to the surroundings, the pipe is insulated with 2.55 cm thick fiberglass. An aluminum foil of a thickness of 0.2 mm covers the insulation. Find the rate of heat loss from the pipe using the following data: hi = 142 W/m K, Ti = 150 C, ho = 68 W/m K, To = 27C, Lpipe = 98.5 m. [Ans.: 0.43 kW].
Two long rods of the same diameter, one of brass(k= 85 W/mK) and the other of
copper (k=375 W/mK) have one of their ends inserted in a furnace and the other ends
exposed to the same atmosphere. At a distance of 105mm away from the furnace, the
temperature of the brass rod is 120 C. Find the distance form the furnace in which the
copper rod have the same temperature
Chapter 3 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 3 - Consider heat conduction through a wall of...Ch. 3 - Consider heat conduction through a plane wall....Ch. 3 - What does the thermal resistance of a medium...Ch. 3 - Can we defme the convection resistance for a unit...Ch. 3 - Consider steady heat transfer through the wall of...Ch. 3 - How is the combined heat transfer coefficient...Ch. 3 - Why are the convection and the radiation...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Someone comments that a microwave oven can be...Ch. 3 - Consider two cold canned drinks, one wrapped in a...
Ch. 3 - The bottom of a pan is made of a 4-mm-thick...Ch. 3 - Consider a surface of area A at which the...Ch. 3 - How does the thermal resistance network associated...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Consider a window glass consisting of two...Ch. 3 - Prob. 16PCh. 3 - Consider a person standing in a room at 20C with...Ch. 3 - Consider an electrically heated brick house...Ch. 3 - A12-cm18-cm circuit board houses on its surface...Ch. 3 - Water is boiling in a 25-cm-diameter aluminum pan...Ch. 3 - A cylindrical resistor element on a circuit board...Ch. 3 - Prob. 22PCh. 3 - A1.0m1.5m double-pane window consists of two...Ch. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28EPCh. 3 - To defog the rear window of an automobile, a very...Ch. 3 - A transparent film is to be bonded onto the top...Ch. 3 - To defrost ice accumulated on the outer surface of...Ch. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Heat is to be conducted along a circuit board that...Ch. 3 - Prob. 38EPCh. 3 - Consider a house that has a 10m20-m base and a...Ch. 3 - Prob. 40EPCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - What is thermal contact resistance? How is it...Ch. 3 - Will the thermal contact resistance be greater for...Ch. 3 - Explain how the thermal contact resistance can be...Ch. 3 - A waII consists of two layers of insulation...Ch. 3 - Prob. 47CPCh. 3 - Consider two surfaces pressed against each other....Ch. 3 - Prob. 49PCh. 3 - Two 5-cm-diameter, 15-cm-long aluminum bars...Ch. 3 - Prob. 51PCh. 3 - Two identical aluminum plates with thickness of 30...Ch. 3 - A tvolayer wall is made of two metal plates, with...Ch. 3 - An aluminum plate and a stainless steel plate are...Ch. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - What are the two approaches used in the...Ch. 3 - The thermal resistance networks can also be used...Ch. 3 - When plotting the thermal resistance network...Ch. 3 - A 10-cm-thick vall is to be constructed with...Ch. 3 - Prob. 62EPCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - A 12-m-long and 5-m-high wall is constructed of...Ch. 3 - Prob. 70EPCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - What is an infinitely long cylinder? When is it...Ch. 3 - Can the thermal resistance concept be used for a...Ch. 3 - Consider a short cylinder whose top and bottom...Ch. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Superheated steam at an average temperature 20C is...Ch. 3 - Prob. 80EPCh. 3 - Prob. 81EPCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 85PCh. 3 - Prob. 86EPCh. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Liquid hydrogen is flowing through an insulated...Ch. 3 - Exposure to high concentrations of gaseous ammonia...Ch. 3 - A mixture of chemicals is flowing in a pipe...Ch. 3 - Ice slurry is being transported in a pipe...Ch. 3 - Prob. 93PCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - What is the critical radius of insulation? How is...Ch. 3 - Prob. 97CPCh. 3 - Prob. 98CPCh. 3 - Prob. 99CPCh. 3 - A pipe is insulated such that the outer radius of...Ch. 3 - A 0.083-in-diameter electrical wire at 90F is...Ch. 3 - Repeat Prob. 3-109E, assuming a thermal contact...Ch. 3 - Prob. 103PCh. 3 - Prob. 104PCh. 3 - Hot air is to be cooled as it is forced to flow...Ch. 3 - Prob. 106CPCh. 3 - Prob. 107CPCh. 3 - The fins attached to a surface are determined to...Ch. 3 - Explain how the fins enhance heat transfer from a...Ch. 3 - How does the overall effectiveness of a finned...Ch. 3 - Hot water is to be cooled as it flows through the...Ch. 3 - Consider two finned surfaces that are identical...Ch. 3 - The heat transfer surface area of a fin is equal...Ch. 3 - Does the (a) efficiency and (b) effectiveness of a...Ch. 3 - Two pin fins are identical, except that the...Ch. 3 - Two plate fins of constant rectangular cross...Ch. 3 - Two finned surfaces are identical, except that the...Ch. 3 - Obtain a relation for the fin efficiency for a fin...Ch. 3 - Prob. 119PCh. 3 - Consider a very long rectangular fin attached to a...Ch. 3 - Prob. 121PCh. 3 - Prob. 122EPCh. 3 - Prob. 123EPCh. 3 - Prob. 124PCh. 3 - Prob. 125PCh. 3 - Prob. 126PCh. 3 - Prob. 127PCh. 3 - Prob. 128PCh. 3 - Prob. 129PCh. 3 - Prob. 130PCh. 3 - Prob. 131PCh. 3 - Prob. 132PCh. 3 - Prob. 133PCh. 3 - Prob. 134PCh. 3 - The human body is adaptable to extreme climatic...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Prob. 138PCh. 3 - What is a conduction shape factor? How is it...Ch. 3 - What is the value of conduction shape factors in...Ch. 3 - Prob. 141PCh. 3 - A thin-walled cylindrical container is placed...Ch. 3 - Prob. 143PCh. 3 - Prob. 144PCh. 3 - Prob. 145PCh. 3 - Prob. 146EPCh. 3 - Prob. 147PCh. 3 - Prob. 148PCh. 3 - Prob. 149PCh. 3 - Prob. 150PCh. 3 - Prob. 151PCh. 3 - Prob. 152PCh. 3 - Consider a house with a flat roof whose outer...Ch. 3 - Prob. 154PCh. 3 - Radioactive material, stored in a spherical vessel...Ch. 3 - What is the R-value of a wall? How does it differ...Ch. 3 - What is effective emissivity for a plane-parallel...Ch. 3 - Prob. 158CPCh. 3 - What is a radiant barrier? What kinds of materials...Ch. 3 - Consider a house whose attic space is ventilated...Ch. 3 - Prob. 161PCh. 3 - Prob. 162PCh. 3 - Prob. 163PCh. 3 - Prob. 164PCh. 3 - Prob. 165PCh. 3 - Prob. 166PCh. 3 - Determine the winter R-value and the U-factor of a...Ch. 3 - The overall heat transfer coefficient (the...Ch. 3 - Prob. 169EPCh. 3 - Determine the summer and winter R-values. in m2 ....Ch. 3 - The overall heat transfer coefficient of a wall is...Ch. 3 - Two homes are identical, except that the walls of...Ch. 3 - Prob. 173PCh. 3 - Consider two identical people each generating 60 V...Ch. 3 - Cold conditioned air at 12C is flowing inside a...Ch. 3 - Hot water is flowing at an average velocity of 1.5...Ch. 3 - Prob. 177PCh. 3 - Prob. 178PCh. 3 - Prob. 179PCh. 3 - Prob. 180PCh. 3 - Prob. 181PCh. 3 - Prob. 182PCh. 3 - Prob. 183PCh. 3 - Prob. 184PCh. 3 - Prob. 185PCh. 3 - A total of 10 rectangular aluminum fins...Ch. 3 - Prob. 187PCh. 3 - A plane wall surface at 200C is to be cooled with...Ch. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - A 0.6-rn-diameter, 1.9-rn-long cylindrical tank...Ch. 3 - Prob. 194PCh. 3 - Prob. 195PCh. 3 - A thin-walled spherical tank is buried in the...Ch. 3 - Heat is lost at a rate of 275 W per m2 area of a 1...Ch. 3 - Prob. 198PCh. 3 - Heat is generated steadily in a 3-cm-diameter...Ch. 3 - Prob. 200PCh. 3 - Prob. 201PCh. 3 - Prob. 202PCh. 3 - Prob. 203PCh. 3 - Prob. 204PCh. 3 - Consider two walls. A and B, with the same surface...Ch. 3 - Prob. 206PCh. 3 - A room at 20C air temperature is losing heat to...Ch. 3 - Prob. 208PCh. 3 - A 1-cm-diameter, 30cm-long fin made of aluminum...Ch. 3 - A hot surface at 80C in air at 20C is to be cooled...Ch. 3 - A cylindrical pin fin of diameter 0.6 cm and...Ch. 3 - A 3-cm-long. 2-nuti x 2-mm rectangular...Ch. 3 - Two finned surfaces with long fins are identical,...Ch. 3 - A 20-cm-diameter hot sphere at 120C is buried in...Ch. 3 - A 25-cm-diameter, 2.4-rn-long vertical cylinder...Ch. 3 - Prob. 216PCh. 3 - The walls of a food storage facility are made of a...Ch. 3 - The equivalent thermal resistance for the thermal...Ch. 3 - Prob. 219PCh. 3 - Prob. 220PCh. 3 - Prob. 221PCh. 3 - The fin efficiency is defined as the ratio of the...Ch. 3 - Prob. 223PCh. 3 - In the United States, building insulation is...Ch. 3 - Prob. 225PCh. 3 - A plane brick wall (k=0.7W/m.K) and is 10 cm...Ch. 3 - The temperature in deep space is close to absolute...Ch. 3 - In the design of electronic components, it is...Ch. 3 - Using cylindrical samples of the same material,...Ch. 3 - Find out about the wall construction of the cabins...Ch. 3 - Prob. 231PCh. 3 - A house with 200-m2 floor space is to be heated...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A metal furnace with a 1.25 m x 0.75 m metal door is placed in a room and set to 400K. A 0.3 m x 0.3 m glass window is located in the furnace door. The thickness of the metal alloy and the glass window are 3 mm and 2 mm, respectively. The glass window has a thermal conductivity (k) of 0.7 W/m .K and the metal door has a thermal conductivity (k) of 3.5 W/m.K. The convective heat coefficient hi and ho on each site of the furnace door is estimated as 10W/m2.K. Assuming the room temperature is held constant at 297 K, calculate the total heat loss from the furnace door. P.S Could you write the solution clearly to better understanding? Step by step using formulas. Another page with detailed steps would be better. Thanks in advance.arrow_forwardConsider two surface pressed against each other..Now the air at the interface is evacuated. will the thermal contact resistance at the interface. Increase or decrease as a result of this evacuation ?arrow_forwardIt is designed in such a way that the internal temperature of a commercial heat treatment furnace can reach up to 165 oC. All surfaces of the furnace consist of firebrick (10 cm), insulation material and sheet metal (3mm) from the inside out. Given that the outdoor temperature is 22 oC, the outer sheet will be allowed to go up to 35 oC, which is a temperature that will not be disturbed by hand contact. In this case, determine the insulation material thickness to be used. Insulation material thermal conductivity coefficient is 0.066 insulation W / m oC, 60 W / m oC for sheet metal and 115 W / m oC for firebrick. Indoor heat transfer coefficient will be accepted as 25 W / m2 oC and 12 W / m2 oC for outdoor environment.arrow_forward
- The oven of a stove must have a sufficient insulation so that the surface temperature of the stove is not greater than 50 oC. To accomplish this, insulation, k = 0.11 W/m-K, is used between the inside and outside metal surfaces. The room temperature is 20 oC, and the outside unit convective coefficient is 8 W/m2-K. Neglecting the resistance of the metal, what is the minimum thickness of insulation required, if the outside temperature reaches 315 oC?arrow_forwardA glass with an area of 0.625 m² is fit in the wooden outside wall of a room. The dimension of wall is 25 x 3.05 m , The wood has a thermal conductivity of 0.151W/m.K and is 3.05 cm thick. The glass has a thermal conductivity of 0.692W/m.K and is 5.0 mm thick. The temperature of the inside room is 27°C and outside air temperature is 268K. calculate ,What is the heat loss through wooden wall and glass window? What are the total heat loss?arrow_forwardA 90-amp electric current is flowing through a 6-mm diameter lead wire. The thermal conductivity of the lead is k= 32 W/m K and the electrical resistance per unit length of the wire is R' = 0.0073 /m. The outer surface of the lead wire is exposed to 40°C air with a convection heat transfer coefficient of h=12 W/m².K. Find the temperature at the center of the lead wire.arrow_forward
- a. What is the heat flux, q"1 [in W/m2], at the left-hand side of layer B? Express your answer as a negative number if the heat flux goes to the left, and as a positive number if the heat flux goes to the right. b.What is the heat flux, q"2 ( in W/m2) at the right-hand side of layer B? Express your answer as a negative number if the heat flux goes to the left, and as a positive number if the heat flux goes to the right. c. What is the temperature, T1, on the left-hand side of layer B, in Celsius? d. What is the temperature, T2, on the right-hand side of layer B, in Celsius?arrow_forwardIt is designed in such a way that the internal temperature of a commercial heat treatment furnace can reach up to 165 oC. All surfaces of the furnace consist of firebrick (10 cm), insulation material and sheet metal (3mm) from the inside out. Given that the outdoor temperature is 22 oC, the outer sheet will be allowed to go up to 35 oC, which is a temperature that will not disturb in contact with hands. In this case, determine the insulation material thickness to be used. The thermal conductivity coefficient of the insulation material is insulation 0.066 W / m oC, 60 W / m oC for sheet metal and 115 W / m oC for firebrick. Indoor heat transfer coefficient will be accepted as 25 W / m2 oC and 12 W / m2 oC for outdoor environment.arrow_forwardConsider a multi-layered walls of a storage building (no windows) that is made of three layers as shown in the figure. The inside layer is a gypsum material that is 1.0 cm thick and has a thermal conductivity of 0.5 W/m.K. We then have a dense brick layer that is 15.0 cm thick and has a thermal conductivity of k = 5 W/m.K The outside wall is made of a wood panel that is 2.0 cm thick and has a thermal conductivity of k = 1.0 W/m.K In a cold day, the outside can be at -10oC and the convective heat transfer coefficient can be hout = 25 W/m2.K due to wind. Inside air of the building is kept at 10oC and the convective heat transfer coefficient over the inside surfaces is rather low with hin = 5 W/m2.K a) Show the thermal resistance diagram with all the temperature nodes. b) What is the rate of heat loss in kW per m2 under these conditions? c) What would be the temperature of the inside surface of the wall? d) What is the temperature at the interface between the brick wall and the plywood?…arrow_forward
- If a heat transfer coefficient of 2.84 W l(m2 • K) exists on each of the two inside faces of two sheets of 6.35-mm-thick glass separated by an air gap, calculate the gap that can be used such that the rate of heat transfer by conduction through the air gap equals the rate of heat transfer by convection. What is the rate of heat transfer if this gap is exceeded. The thermal conductivity of air of 0.0242 WI (m . K). Solve for temperature of 20°C and 12°C on the outside surfaces of the glass. Would the calculated gap change in value for different values of the surface temperatures? Would there be any advantage to increasing the gap beyond this calculated value?arrow_forwardA furnace wall consists of 2 ft of brick . The brick has athermal conductivity of 0.6 Btu/ hr sq ft ( ° F /ft), a specific heat of0.2 Btu/ lb ° F, and a density of 110 lb/cu ft. The temperature atthe inside surface of the wall is 1100 ° F , and at the outside surface,200 ° F .(a) Calculate the thermal diffusivity of the brick .(b) Calculate the heat loss per hour through a wall 10 ft high and10 ft long(c ) Calculatearrow_forwardA wall in a house contains a single window. The window consists of a single pane of glass whose area is 0.13 m2 and whose thickness is 8 mm. Treat the wall as a slab of the insulating material Styrofoam whose area and thickness are 19 m2 and 0.10 m, respectively. Heat is lost via conduction through the wall and the window. The temperature difference between the inside and outside is the same for the wall and the window. Of the total heat lost by the wall and the window, what is the percentage lost by the window?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license