Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 168P
The overall heat transfer coefficient (the U-value) of a wall under winter design conditions is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An oil radiator has an outside surface area
of 0.18 m2 and operates at a surface
temperature of 85 degree Celsius. If air
moves over the surface of the radiator at a
temperature of 16 degree Celsius and
gives rise to a heat transfer coefficient
equal to 38.25 W/(m2-K). Find out the
heat transfer flux?
O 2923 W/m2
O
3801 W/m²
O 2639 W/m²
O 1659 W/m²
An oil radiator has an outside surface area
of 0.18 m2 and operates at a surface
temperature of 85 degree Celsius. If air
moves over the surface of the radiator at a
temperature of 16 degree Celsius and
gives rise to a heat transfer coefficient
equal to 38.25 W/(m2-K). Find out the
heat transfer rate?
O 230 W
O 475 W
550 W
O 675 W
Rock has often been suggested as a medium for the thermal storage of energy.A cylindrical piece of rock with diameter 10 m and height 20 m is used for thestorage of thermal energy. The rock is insulated and has an average heattransfer coefficient, U = 0.28 kW/m2 K. The density of the rock material is2,650 kg/m3 and its specific heat capacity is 0.72 kJ/kgK. The temperature ofthe rock is raised to 500C and the ambient temperature is 25C. Determine:a) The total energy stored in the rock in MWh.b) The temperature of the rock 12 h after the heating process stops.c) The heat that has escaped from the rock during this 12 h period.d) The loss of exergy of the rock during this 12 h period.
Chapter 3 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 3 - Consider heat conduction through a wall of...Ch. 3 - Consider heat conduction through a plane wall....Ch. 3 - What does the thermal resistance of a medium...Ch. 3 - Can we defme the convection resistance for a unit...Ch. 3 - Consider steady heat transfer through the wall of...Ch. 3 - How is the combined heat transfer coefficient...Ch. 3 - Why are the convection and the radiation...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Someone comments that a microwave oven can be...Ch. 3 - Consider two cold canned drinks, one wrapped in a...
Ch. 3 - The bottom of a pan is made of a 4-mm-thick...Ch. 3 - Consider a surface of area A at which the...Ch. 3 - How does the thermal resistance network associated...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Consider a window glass consisting of two...Ch. 3 - Prob. 16PCh. 3 - Consider a person standing in a room at 20C with...Ch. 3 - Consider an electrically heated brick house...Ch. 3 - A12-cm18-cm circuit board houses on its surface...Ch. 3 - Water is boiling in a 25-cm-diameter aluminum pan...Ch. 3 - A cylindrical resistor element on a circuit board...Ch. 3 - Prob. 22PCh. 3 - A1.0m1.5m double-pane window consists of two...Ch. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28EPCh. 3 - To defog the rear window of an automobile, a very...Ch. 3 - A transparent film is to be bonded onto the top...Ch. 3 - To defrost ice accumulated on the outer surface of...Ch. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Heat is to be conducted along a circuit board that...Ch. 3 - Prob. 38EPCh. 3 - Consider a house that has a 10m20-m base and a...Ch. 3 - Prob. 40EPCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - What is thermal contact resistance? How is it...Ch. 3 - Will the thermal contact resistance be greater for...Ch. 3 - Explain how the thermal contact resistance can be...Ch. 3 - A waII consists of two layers of insulation...Ch. 3 - Prob. 47CPCh. 3 - Consider two surfaces pressed against each other....Ch. 3 - Prob. 49PCh. 3 - Two 5-cm-diameter, 15-cm-long aluminum bars...Ch. 3 - Prob. 51PCh. 3 - Two identical aluminum plates with thickness of 30...Ch. 3 - A tvolayer wall is made of two metal plates, with...Ch. 3 - An aluminum plate and a stainless steel plate are...Ch. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - What are the two approaches used in the...Ch. 3 - The thermal resistance networks can also be used...Ch. 3 - When plotting the thermal resistance network...Ch. 3 - A 10-cm-thick vall is to be constructed with...Ch. 3 - Prob. 62EPCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - A 12-m-long and 5-m-high wall is constructed of...Ch. 3 - Prob. 70EPCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - What is an infinitely long cylinder? When is it...Ch. 3 - Can the thermal resistance concept be used for a...Ch. 3 - Consider a short cylinder whose top and bottom...Ch. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Superheated steam at an average temperature 20C is...Ch. 3 - Prob. 80EPCh. 3 - Prob. 81EPCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 85PCh. 3 - Prob. 86EPCh. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Liquid hydrogen is flowing through an insulated...Ch. 3 - Exposure to high concentrations of gaseous ammonia...Ch. 3 - A mixture of chemicals is flowing in a pipe...Ch. 3 - Ice slurry is being transported in a pipe...Ch. 3 - Prob. 93PCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - What is the critical radius of insulation? How is...Ch. 3 - Prob. 97CPCh. 3 - Prob. 98CPCh. 3 - Prob. 99CPCh. 3 - A pipe is insulated such that the outer radius of...Ch. 3 - A 0.083-in-diameter electrical wire at 90F is...Ch. 3 - Repeat Prob. 3-109E, assuming a thermal contact...Ch. 3 - Prob. 103PCh. 3 - Prob. 104PCh. 3 - Hot air is to be cooled as it is forced to flow...Ch. 3 - Prob. 106CPCh. 3 - Prob. 107CPCh. 3 - The fins attached to a surface are determined to...Ch. 3 - Explain how the fins enhance heat transfer from a...Ch. 3 - How does the overall effectiveness of a finned...Ch. 3 - Hot water is to be cooled as it flows through the...Ch. 3 - Consider two finned surfaces that are identical...Ch. 3 - The heat transfer surface area of a fin is equal...Ch. 3 - Does the (a) efficiency and (b) effectiveness of a...Ch. 3 - Two pin fins are identical, except that the...Ch. 3 - Two plate fins of constant rectangular cross...Ch. 3 - Two finned surfaces are identical, except that the...Ch. 3 - Obtain a relation for the fin efficiency for a fin...Ch. 3 - Prob. 119PCh. 3 - Consider a very long rectangular fin attached to a...Ch. 3 - Prob. 121PCh. 3 - Prob. 122EPCh. 3 - Prob. 123EPCh. 3 - Prob. 124PCh. 3 - Prob. 125PCh. 3 - Prob. 126PCh. 3 - Prob. 127PCh. 3 - Prob. 128PCh. 3 - Prob. 129PCh. 3 - Prob. 130PCh. 3 - Prob. 131PCh. 3 - Prob. 132PCh. 3 - Prob. 133PCh. 3 - Prob. 134PCh. 3 - The human body is adaptable to extreme climatic...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Prob. 138PCh. 3 - What is a conduction shape factor? How is it...Ch. 3 - What is the value of conduction shape factors in...Ch. 3 - Prob. 141PCh. 3 - A thin-walled cylindrical container is placed...Ch. 3 - Prob. 143PCh. 3 - Prob. 144PCh. 3 - Prob. 145PCh. 3 - Prob. 146EPCh. 3 - Prob. 147PCh. 3 - Prob. 148PCh. 3 - Prob. 149PCh. 3 - Prob. 150PCh. 3 - Prob. 151PCh. 3 - Prob. 152PCh. 3 - Consider a house with a flat roof whose outer...Ch. 3 - Prob. 154PCh. 3 - Radioactive material, stored in a spherical vessel...Ch. 3 - What is the R-value of a wall? How does it differ...Ch. 3 - What is effective emissivity for a plane-parallel...Ch. 3 - Prob. 158CPCh. 3 - What is a radiant barrier? What kinds of materials...Ch. 3 - Consider a house whose attic space is ventilated...Ch. 3 - Prob. 161PCh. 3 - Prob. 162PCh. 3 - Prob. 163PCh. 3 - Prob. 164PCh. 3 - Prob. 165PCh. 3 - Prob. 166PCh. 3 - Determine the winter R-value and the U-factor of a...Ch. 3 - The overall heat transfer coefficient (the...Ch. 3 - Prob. 169EPCh. 3 - Determine the summer and winter R-values. in m2 ....Ch. 3 - The overall heat transfer coefficient of a wall is...Ch. 3 - Two homes are identical, except that the walls of...Ch. 3 - Prob. 173PCh. 3 - Consider two identical people each generating 60 V...Ch. 3 - Cold conditioned air at 12C is flowing inside a...Ch. 3 - Hot water is flowing at an average velocity of 1.5...Ch. 3 - Prob. 177PCh. 3 - Prob. 178PCh. 3 - Prob. 179PCh. 3 - Prob. 180PCh. 3 - Prob. 181PCh. 3 - Prob. 182PCh. 3 - Prob. 183PCh. 3 - Prob. 184PCh. 3 - Prob. 185PCh. 3 - A total of 10 rectangular aluminum fins...Ch. 3 - Prob. 187PCh. 3 - A plane wall surface at 200C is to be cooled with...Ch. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - A 0.6-rn-diameter, 1.9-rn-long cylindrical tank...Ch. 3 - Prob. 194PCh. 3 - Prob. 195PCh. 3 - A thin-walled spherical tank is buried in the...Ch. 3 - Heat is lost at a rate of 275 W per m2 area of a 1...Ch. 3 - Prob. 198PCh. 3 - Heat is generated steadily in a 3-cm-diameter...Ch. 3 - Prob. 200PCh. 3 - Prob. 201PCh. 3 - Prob. 202PCh. 3 - Prob. 203PCh. 3 - Prob. 204PCh. 3 - Consider two walls. A and B, with the same surface...Ch. 3 - Prob. 206PCh. 3 - A room at 20C air temperature is losing heat to...Ch. 3 - Prob. 208PCh. 3 - A 1-cm-diameter, 30cm-long fin made of aluminum...Ch. 3 - A hot surface at 80C in air at 20C is to be cooled...Ch. 3 - A cylindrical pin fin of diameter 0.6 cm and...Ch. 3 - A 3-cm-long. 2-nuti x 2-mm rectangular...Ch. 3 - Two finned surfaces with long fins are identical,...Ch. 3 - A 20-cm-diameter hot sphere at 120C is buried in...Ch. 3 - A 25-cm-diameter, 2.4-rn-long vertical cylinder...Ch. 3 - Prob. 216PCh. 3 - The walls of a food storage facility are made of a...Ch. 3 - The equivalent thermal resistance for the thermal...Ch. 3 - Prob. 219PCh. 3 - Prob. 220PCh. 3 - Prob. 221PCh. 3 - The fin efficiency is defined as the ratio of the...Ch. 3 - Prob. 223PCh. 3 - In the United States, building insulation is...Ch. 3 - Prob. 225PCh. 3 - A plane brick wall (k=0.7W/m.K) and is 10 cm...Ch. 3 - The temperature in deep space is close to absolute...Ch. 3 - In the design of electronic components, it is...Ch. 3 - Using cylindrical samples of the same material,...Ch. 3 - Find out about the wall construction of the cabins...Ch. 3 - Prob. 231PCh. 3 - A house with 200-m2 floor space is to be heated...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.19 A cryogenic fluid is stored in a 0.3-m-diameter spherical container is still air. If the convection heat transfer coefficient between the outer surface of the container and the air is 6.8 , the temperature of the air is 27°C, and the temperature of the surface of the sphere is –183°C, determine the rate of heat transfer by convection.arrow_forward700 W/m3 electrical heat is generated in a large plane wall whose one side is insulated while the other side is subjected to convection. The thermal conductivity of the wall is (k W/m.K) and the convection heat transfer coefficient is (h = 17 W/m?K). Determine the location and the value for the maximum temperature and the minimum temperature in the plate for steady one-dimensional heat transfer. Assume T. = 25°C. A=1 m?; L= 25 cm). = 20arrow_forwardThe convection coefficient for a hot a fluid flowing over a cool surface is 150 W/m^2. The fluid temperature is 410 K and the surface is held at 290 K. Determine the heat transfer per unit surface area from the fluid to the surface.arrow_forward
- In a thermal power plant, a horizontal copper pipe of "D" diameter, "L" length and thickness 1.7 cm enters into the boiler that has the thermal conductivity as 0.3 W/mK. The boiler is maintained at 107degreeC and temperature of the water that flows inside the pipe is at 31degreeC. If the energy transfer (Q) is 124925 kJ in 7 hours. Determine the Heat transfer rate, Surface area of the pipe and Diameter & Length of the pipe, if D = 0.012 L.Change in Temperature (in K) Heat Transfer Rate (in W) Surface Area of the Pipe (m2) Pipe Length (in m) Pipe Diameter (in mm)arrow_forwardA rectangular wall of length "L" m and height "H" m is made from a thick bricklayer. The rectangular wall has a surface area as 11 m2 & Thermal conductivity as 0.53 W/mK. The wall is subjected to heat transfer due to the outside temperature 43 °C and inside temperature 24 °C. If the energy loss is 11219 kJ in 484 minutes. (HINT: 1 minute = 60 %3D seconds) Determine the following -- i) Heat transfer rate, ii) Thickness of the wall.arrow_forwardA wall of length "L" m and height "H" m is made from a thick bricklayer of 38 cm with thermal conductivity of 0.57 W/mK is subjected to heat transfer due to the outside temperature as 35 oC and inside temperature 28 oC. If the energy loss is 10465 kJ in 11 hours. Determine the Heat transfer rate, Surface Area and Length and Height of the wall, if L = 3.5 H. Solution: i) Heat Transfer Rate (in Joule/Sec) = ii) Surface Area of the Wall (in m2) = iii) Height of the Wall (H in m) = iv) Length of the Wall (L in m) =arrow_forward
- Q2/ Consider a 1.2-m-high and 2-m-wide glass window whose thickness is 6 mm and thermal conductivity is k = 0.78 W/m. °C. Determine the steady rate of heat transfer through this glass window and the temperature of its inner surface for a day during which the room is maintained at 24°C while the temperature of the outdoors is 5°C. Take the convection heat transfer coefficients on the inner and outer surfaces of the window to be h1 = 10 W/m2 °C and h2= 25 W/m2 °C, and disregard any heat transfer by radiation.arrow_forward0/1 The thermal conductivity of Aluminum material at127°Cand 527 C are 240 and 218 W/m. K, respectively. Determine ko and B, constants for the used material. k=ko (1 + BT) is assumed with T in °C. 0/2 Heat is generated in a slab of 120 mm thickness with a conductivity of 200 W/m K at a rate of 106W/m. Determine the temperature at the mid and quarter planes if the surface of the solid on both sides are exposed to convection at 30°C with a convection coefficient of 500 W/m K. Also find the heat flow rate at these planes and the temperature gradients at these planes. 0/3 1. Determine the heat flow for (i) rectangular fins and (ii) triangular fin of 20 mm length and 3 mm base thickness. Thermal conductivity = 45 W/m K. Conwection coefficient h= 100 W/m K, base temperature = 120°C surrounding fluid temperature = 35°C. Determine also the fin effectiveness. 2. A circumferential fin on a pipe of 50 mm OD is 3 mm thick and 20 mm long. Using the property values and other parameters in 1,…arrow_forwardConsider a wall made of Material A that is 4.5m long, 3.0m high, and 0.22m thick. The interior and exterior design temperatures are Too1 and Too2, respectively, the heat transfer coefficients on the interior and exterior surfaces are 10 and 20W / m2 •C. If insulating material is placed on the inside surface of the wall to maintain the temperature shallow from it to T1. Determine the required thickness of the insulating material.arrow_forward
- Question:- A cylindrical steel tank with a diameter of 3 m and height of 4.4 m is used to store chilled water (at 9.3 °C) as part of an air conditioning system for a building. The heat transfer (convection) co-efficient for the surface of the tank in contact with the water in this application is 15 W/(m2.K). Given the surface temperature of the metal tank is 40 °C. At what rate must heat energy be removed from the water just to maintain its temperature constant at 9.3 °C ? Assume the tank is an enclosed cylinder and that the tank is always full. Note - the thickness of the tank is not relevant to this problem. Work in base SI units.arrow_forwardConsider a 10 cm wall made of polyurethane board (k = 0.0260 W/m.K) which is exposed to still air (h = 9.37 W/m2.K) on the inside and outer surface exposed to 24 km/h wind (h = 34 W/m2.K). Determine the overall coefficient of heat transfer in W/m2.K.arrow_forwardA wall of length "L" m and height "H" m is made from a thick bricklayer of 20 cm with thermal conductivity of 0.59 W/mK is subjected to heat transfer due to the outside temperature as 38 oC and inside temperature 24 oC. If the energy loss is 12867 kJ in 9 hours. Determine the Heat transfer rate, Surface Area and Length and Height of the wall, if L = 2 H. Solution: Heat Transfer Rate (in Joule/Sec) = Surface Area of the Wall (in m2) = Height of the Wall (H in m) = Length of the Wall (L in m) =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license