Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 181P
a.
To determine
The rate of heat transfer across the wall of the warehouse.
b.
To determine
The rate of heat transfer for the bolted wall.
c.
To determine
The percentage change in the rate of heat transfer through the wall due to metal bolts.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2) Urethane (k = 0.026 W/m-K) is used to insulate the sidewall and the top and bottom of a cylindrical
hot water tank. The insulation is 40 mm thick and is sandwiched between sheet metal of thin-wall
construction. The height and inside diameter of the tank are 2 m and 0.8 m, respectively. The tank is in
ambient air with T = 10 °C and h = 10 W/m²-K. If the hot water maintains the inner surface at 55 °C, and
energy costs amount to $0.15 per kWh, what is the daily cost to maintain the water in storage? Argue
that the thermal resistance of the tank wall is negligible. What does this say about the temperature drop
across the tank wall?
The wall of a 5 m high cylinderical steel tank (ks= 20 W/mK) of inner diameter 1.5 m and 200 mm thick contains hot oil at 100 C. On the outside of the tank 12 mm of spray urethane insulation is added to stop the oil from cooling. If the worst outside temperature is -6 , (hi = 16 W/m^2 K) and (ho = 5 W/m^2 K) how much heat needs to be added to keep the tank at 100 C for pumping reasons and what are the overall heat transfer coefficients Uo and Ui?
A small storage room has the dimensions of 20 m X 20m X 3m high.
The walls of the storage consist of three layers;
Drywall (thickness = 0.5 inch, K = 0.5 W/mK),
Fiberglass (thickness = 2 cm, K = 0.1 W/mK), and
Brick (thickness = 8 cm, K = 0.5 W/mK).
On one of the walls, there is one small wooden door with the dimensions of 0.9
m X 2 m and thickness of 3 cm. The thermal conductivity of wood is 0.4 W/mK.
The inside temperature of the storage room is to be maintained at 20°C, while
the temperature outside is 0°C. The rate of heat lost through the roof is 30 kW.
Heat loss through the floor can be ignored.
a) Calculate the total heat loss from the storage room (kW).
b) Determine the temperature at the inner wall of the brick (°C).
c) If cost of heating is $0.166/kWh, calculate the heating cost per month. Note
that 1 kWh = 3600 kJ.
Chapter 3 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 3 - Consider heat conduction through a wall of...Ch. 3 - Consider heat conduction through a plane wall....Ch. 3 - What does the thermal resistance of a medium...Ch. 3 - Can we defme the convection resistance for a unit...Ch. 3 - Consider steady heat transfer through the wall of...Ch. 3 - How is the combined heat transfer coefficient...Ch. 3 - Why are the convection and the radiation...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Someone comments that a microwave oven can be...Ch. 3 - Consider two cold canned drinks, one wrapped in a...
Ch. 3 - The bottom of a pan is made of a 4-mm-thick...Ch. 3 - Consider a surface of area A at which the...Ch. 3 - How does the thermal resistance network associated...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Consider a window glass consisting of two...Ch. 3 - Prob. 16PCh. 3 - Consider a person standing in a room at 20C with...Ch. 3 - Consider an electrically heated brick house...Ch. 3 - A12-cm18-cm circuit board houses on its surface...Ch. 3 - Water is boiling in a 25-cm-diameter aluminum pan...Ch. 3 - A cylindrical resistor element on a circuit board...Ch. 3 - Prob. 22PCh. 3 - A1.0m1.5m double-pane window consists of two...Ch. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28EPCh. 3 - To defog the rear window of an automobile, a very...Ch. 3 - A transparent film is to be bonded onto the top...Ch. 3 - To defrost ice accumulated on the outer surface of...Ch. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Heat is to be conducted along a circuit board that...Ch. 3 - Prob. 38EPCh. 3 - Consider a house that has a 10m20-m base and a...Ch. 3 - Prob. 40EPCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - What is thermal contact resistance? How is it...Ch. 3 - Will the thermal contact resistance be greater for...Ch. 3 - Explain how the thermal contact resistance can be...Ch. 3 - A waII consists of two layers of insulation...Ch. 3 - Prob. 47CPCh. 3 - Consider two surfaces pressed against each other....Ch. 3 - Prob. 49PCh. 3 - Two 5-cm-diameter, 15-cm-long aluminum bars...Ch. 3 - Prob. 51PCh. 3 - Two identical aluminum plates with thickness of 30...Ch. 3 - A tvolayer wall is made of two metal plates, with...Ch. 3 - An aluminum plate and a stainless steel plate are...Ch. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - What are the two approaches used in the...Ch. 3 - The thermal resistance networks can also be used...Ch. 3 - When plotting the thermal resistance network...Ch. 3 - A 10-cm-thick vall is to be constructed with...Ch. 3 - Prob. 62EPCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - A 12-m-long and 5-m-high wall is constructed of...Ch. 3 - Prob. 70EPCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - What is an infinitely long cylinder? When is it...Ch. 3 - Can the thermal resistance concept be used for a...Ch. 3 - Consider a short cylinder whose top and bottom...Ch. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Superheated steam at an average temperature 20C is...Ch. 3 - Prob. 80EPCh. 3 - Prob. 81EPCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 85PCh. 3 - Prob. 86EPCh. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Liquid hydrogen is flowing through an insulated...Ch. 3 - Exposure to high concentrations of gaseous ammonia...Ch. 3 - A mixture of chemicals is flowing in a pipe...Ch. 3 - Ice slurry is being transported in a pipe...Ch. 3 - Prob. 93PCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - What is the critical radius of insulation? How is...Ch. 3 - Prob. 97CPCh. 3 - Prob. 98CPCh. 3 - Prob. 99CPCh. 3 - A pipe is insulated such that the outer radius of...Ch. 3 - A 0.083-in-diameter electrical wire at 90F is...Ch. 3 - Repeat Prob. 3-109E, assuming a thermal contact...Ch. 3 - Prob. 103PCh. 3 - Prob. 104PCh. 3 - Hot air is to be cooled as it is forced to flow...Ch. 3 - Prob. 106CPCh. 3 - Prob. 107CPCh. 3 - The fins attached to a surface are determined to...Ch. 3 - Explain how the fins enhance heat transfer from a...Ch. 3 - How does the overall effectiveness of a finned...Ch. 3 - Hot water is to be cooled as it flows through the...Ch. 3 - Consider two finned surfaces that are identical...Ch. 3 - The heat transfer surface area of a fin is equal...Ch. 3 - Does the (a) efficiency and (b) effectiveness of a...Ch. 3 - Two pin fins are identical, except that the...Ch. 3 - Two plate fins of constant rectangular cross...Ch. 3 - Two finned surfaces are identical, except that the...Ch. 3 - Obtain a relation for the fin efficiency for a fin...Ch. 3 - Prob. 119PCh. 3 - Consider a very long rectangular fin attached to a...Ch. 3 - Prob. 121PCh. 3 - Prob. 122EPCh. 3 - Prob. 123EPCh. 3 - Prob. 124PCh. 3 - Prob. 125PCh. 3 - Prob. 126PCh. 3 - Prob. 127PCh. 3 - Prob. 128PCh. 3 - Prob. 129PCh. 3 - Prob. 130PCh. 3 - Prob. 131PCh. 3 - Prob. 132PCh. 3 - Prob. 133PCh. 3 - Prob. 134PCh. 3 - The human body is adaptable to extreme climatic...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Prob. 138PCh. 3 - What is a conduction shape factor? How is it...Ch. 3 - What is the value of conduction shape factors in...Ch. 3 - Prob. 141PCh. 3 - A thin-walled cylindrical container is placed...Ch. 3 - Prob. 143PCh. 3 - Prob. 144PCh. 3 - Prob. 145PCh. 3 - Prob. 146EPCh. 3 - Prob. 147PCh. 3 - Prob. 148PCh. 3 - Prob. 149PCh. 3 - Prob. 150PCh. 3 - Prob. 151PCh. 3 - Prob. 152PCh. 3 - Consider a house with a flat roof whose outer...Ch. 3 - Prob. 154PCh. 3 - Radioactive material, stored in a spherical vessel...Ch. 3 - What is the R-value of a wall? How does it differ...Ch. 3 - What is effective emissivity for a plane-parallel...Ch. 3 - Prob. 158CPCh. 3 - What is a radiant barrier? What kinds of materials...Ch. 3 - Consider a house whose attic space is ventilated...Ch. 3 - Prob. 161PCh. 3 - Prob. 162PCh. 3 - Prob. 163PCh. 3 - Prob. 164PCh. 3 - Prob. 165PCh. 3 - Prob. 166PCh. 3 - Determine the winter R-value and the U-factor of a...Ch. 3 - The overall heat transfer coefficient (the...Ch. 3 - Prob. 169EPCh. 3 - Determine the summer and winter R-values. in m2 ....Ch. 3 - The overall heat transfer coefficient of a wall is...Ch. 3 - Two homes are identical, except that the walls of...Ch. 3 - Prob. 173PCh. 3 - Consider two identical people each generating 60 V...Ch. 3 - Cold conditioned air at 12C is flowing inside a...Ch. 3 - Hot water is flowing at an average velocity of 1.5...Ch. 3 - Prob. 177PCh. 3 - Prob. 178PCh. 3 - Prob. 179PCh. 3 - Prob. 180PCh. 3 - Prob. 181PCh. 3 - Prob. 182PCh. 3 - Prob. 183PCh. 3 - Prob. 184PCh. 3 - Prob. 185PCh. 3 - A total of 10 rectangular aluminum fins...Ch. 3 - Prob. 187PCh. 3 - A plane wall surface at 200C is to be cooled with...Ch. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - A 0.6-rn-diameter, 1.9-rn-long cylindrical tank...Ch. 3 - Prob. 194PCh. 3 - Prob. 195PCh. 3 - A thin-walled spherical tank is buried in the...Ch. 3 - Heat is lost at a rate of 275 W per m2 area of a 1...Ch. 3 - Prob. 198PCh. 3 - Heat is generated steadily in a 3-cm-diameter...Ch. 3 - Prob. 200PCh. 3 - Prob. 201PCh. 3 - Prob. 202PCh. 3 - Prob. 203PCh. 3 - Prob. 204PCh. 3 - Consider two walls. A and B, with the same surface...Ch. 3 - Prob. 206PCh. 3 - A room at 20C air temperature is losing heat to...Ch. 3 - Prob. 208PCh. 3 - A 1-cm-diameter, 30cm-long fin made of aluminum...Ch. 3 - A hot surface at 80C in air at 20C is to be cooled...Ch. 3 - A cylindrical pin fin of diameter 0.6 cm and...Ch. 3 - A 3-cm-long. 2-nuti x 2-mm rectangular...Ch. 3 - Two finned surfaces with long fins are identical,...Ch. 3 - A 20-cm-diameter hot sphere at 120C is buried in...Ch. 3 - A 25-cm-diameter, 2.4-rn-long vertical cylinder...Ch. 3 - Prob. 216PCh. 3 - The walls of a food storage facility are made of a...Ch. 3 - The equivalent thermal resistance for the thermal...Ch. 3 - Prob. 219PCh. 3 - Prob. 220PCh. 3 - Prob. 221PCh. 3 - The fin efficiency is defined as the ratio of the...Ch. 3 - Prob. 223PCh. 3 - In the United States, building insulation is...Ch. 3 - Prob. 225PCh. 3 - A plane brick wall (k=0.7W/m.K) and is 10 cm...Ch. 3 - The temperature in deep space is close to absolute...Ch. 3 - In the design of electronic components, it is...Ch. 3 - Using cylindrical samples of the same material,...Ch. 3 - Find out about the wall construction of the cabins...Ch. 3 - Prob. 231PCh. 3 - A house with 200-m2 floor space is to be heated...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- What’s the correct answer for this please ?arrow_forwardH.W: 10-02-2021: The exterior wall of a building consists of 100 mm thick face brick (k = 0.9 Wm¯'K'), 40 mm thick polystyrene insulating board (k 0.036 Wm'K¯), 125 mm thick concrete block (k = 1.8 Wm¯'K') and 15 mm thick interior gypsum board (k = 0.18 Wm K). The inside and outside convective heat transfer coefficients are 6.5 Wm K and 22.5 Wm K respectively. The outside air temperature is -5°C and the inside air temperature is 20°C. The wall is 3 m high and 15 m long. Calculate (i) the rate of heat loss through the wall,arrow_forwardPlease help me with this question. This is for review purposes. Thank you!arrow_forward
- PLEASE ANSWER IT ASAP FOR AN UPVOTE >>THERMODYNAMICSarrow_forwardA cylindrical cold storage facility with an inner diameter of 4m and height of 2m is constructed. For the wall, the first layer is 6 cm of glass wool (0.1 W/m-C), followed by 30 cm of concrete. The temperature inside is maintained at -10C (hin = 55 W/m^2-C) while the outside temperature is 10°C (hout = 22 w/m^2-C). If the steady rate of heat transfer is at 60W, (a) what is the thermal conductivity of concrete? (b) At what radius is the temperature at 0°C? To prevent water condensation inside the concrete wall (which damages the structure), A 5 cm layer of insulation (k = 0.15 W/m-C) is added to the exterior of the facility. (c) What is the new rate of heat transfer?arrow_forwardA cylindrical cold storage facility with an inner diameter of 4m and height of 2m is constructed. For the wall, the first layer is 6 cm of glass wool (0.1 W/m-C), followed by 30 cm of concrete. The temperature inside is maintained at -10C (hin = 55 W/m^2-C) while the outside temperature is 10°C (hout = 22 w/m^2-C). If the steady rate of heat transfer is at 60W, (a) what is the thermal conductivity of concrete? (b) At what radius is the temperature at 0°C? To prevent water condensation inside the concrete wall (which damages the structure), A 5 cm layer of insulation (k = 0.15 W/m-C) is added to the exterior of the facility. (c) What is the new rate of heat transfer? (d) What is the temperature at the interface of the concrete wall and new insulation? (e) is condensation within the core of the wall prevented?arrow_forward
- Steaks (2 cm thick, k = 0.45 W/m - °C, « = 0.91 x 107 m2/s) usually have an original temperature of 25 °C. They will be cooled in a refrigeration room. The said room has a temperature of -11 °C. The heat transfer coefficient on both sides of the steak is 9 W/m2 - °C. How long will it take for both surfaces of the meat to be cooled to 2 °C? Assume the geometry of steaks to be a flat slab.arrow_forwardSteel pipe (outer diameter 100 mm) is covered with two layers of insulation. The inner layer, 40 mm thick, has a thermal conductivity of 0.07 W / (m K). The outer layer, 20 mm thick, has a thermal conductivity of 0.15 W / (m K). Pipes are used to deliver steam with a pressure of 600 kPa. The temperature on the outer insulation surface is 24 ° C. If the pipe is 8 m long, determine the following: (assuming that the conduction heat transfer resistance of the steel pipe and the vapor convection resistance are negligible). a. Heat loss per hour. = kJ / hour. b. Temperature between insulation layers. = ° Carrow_forwardDetermine conductive resistance (in K/W) of a 80 m^2 plane wall composed of 2 layers: Layer 1: brick, thickness δ1 = 620 mm, thermal conductivity λ1 = 0.310 W/(m.K) Layer 2: EPS, thickness δ2 = 52 mm, thermal conductivity λ2 = 0.026 W/(m.K) Evaluate the heat loss through this wall if indoor temperature is 22 C and outdoor temperature is -18 C.arrow_forward
- Plz plz solve this within 50 min Because I have to submit it in 1 hr pLz help mearrow_forwardQ1) A 6 m wide 2.8 m high wall is constructed of one layer of common brick (k = 0. 72 W/m. °C) of thickness 20 cm, one inside layer of light-weight plaster (k = 0.36 W/m. °C) of thickness 1 cm, and one outside layer of cement based covering (k = 1.4 W/m. K) of thickness 2 cm. The inner surface of the wall is maintained at 23 °C while the outer surface is exposed to outdoors at 8 °C with a combined convection and radiation heat transfer coefficient of 17 W/m2.°C. It is desired to insulate the wall in order to decrease the heat loss by 75 %. For the same inner surface temperature, determine the thickness of insulation and the outer surface temperature if the wall is insulated with polyurethane foam (k = 0.025 W/m.°C). Use thermal resistance network.arrow_forwardSteel pipe (outer diameter 100 mm) is covered with two layers of insulation. The inner layer, 40 mm thick, has a thermal conductivity of 0.07 W / (m K). The outer layer, 20 mm thick, has a thermal conductivity of 0.15 W / (m K). Pipes are used to delivering steam with a pressure of 600 kPa. The temperature on the outer insulation surface is 24 ° C. If the pipe is 10 m long, determine the following: (assuming that the conduction heat transfer resistance of the steel pipe and the vapor convection resistance are negligible). a. Hourly heat loss ... (kj / hr)b. temperature between insulation layers ... (° C.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license