Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 3.3QP
Draw a simple iron–carbon phase diagram showing the liquid, liquid–solid, and solid phases.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; a = 12.5 x 10-6/°F] bar
with a width of 3.0 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; a = 9.6 x 10-6/°F] bar with a width of 2.0 in. and a thickness of
0.75 in. The supports at A and C are rigid. Determine
(a) the lowest temperature at which the two bars contact each other.
(b) the normal stress in the two bars at a temperature of 250°F.
(c) the normal strain in the two bars at 250°F.
(d) the change in width of the aluminum bar at a temperature of 250°F.
(1)
3.0 in.
32 in.
2.0 in.
B ↓
(2)
44 in.
0.04-in. gap
Determine the lowest temperature, Tcontact, at which the two bars contact each other.
At a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; α=α=12.5 x 10-6/°F] bar with a width of 2.5 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; α=α=9.6 x 10-6/°F] bar with a width of 1.7 in. and a thickness of 0.75 in. The supports at A and C are rigid. Assume h1=2.5 in., h2=1.7 in., L1=31 in., L2=46 in., and Δ=Δ= 0.04 in.
(A) Determine the lowest temperature, Tcontact, at which the two bars contact each other.
(B) Find a geometry-of-deformation relationship for the case in which the gap is closed. Express this relationship by entering the sum δ1+δ2, where δ1 is the axial deflection of Bar (1), and δ2 is the axial deflection of Bar (2). δ1+δ2= _____in.
(C) Find the force in the Bar (1), F1, and the force in Bar (2), F2, at a temperature of 225oF. By convention, a tension force is positive and a compression force is negative. IN KIPS
(D) Find σ1 and σ2,…
At a temperature of 60°F, a 0.02-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; α=α=12.5 x 10-6/°F] bar with a width of 2.8 in. and a thickness of 0.85 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; α=α=9.6 x 10-6/°F] bar with a width of 1.6 in. and a thickness of 0.85 in. The supports at A and C are rigid. Assume h1=2.8 in., h2=1.6 in., L1=26 in., L2=40 in., and Δ=Δ= 0.02 in. Determine(a) the lowest temperature at which the two bars contact each other.(b) the normal stress in the two bars at a temperature of 225°F.(c) the normal strain in the two bars at 225°F.(d) the change in width of the aluminum bar at a temperature of 225°F.
Chapter 3 Solutions
Materials for Civil and Construction Engineers (4th Edition)
Ch. 3 - What is the chemical composition of steel? What is...Ch. 3 - Why does the ironcarbon phase diagram go only to...Ch. 3 - Draw a simple ironcarbon phase diagram showing the...Ch. 3 - What is the typical maximum percent of carbon in...Ch. 3 - Calculate the amounts and compositions of phases...Ch. 3 - Briefly discuss four heat treatment methods to...Ch. 3 - Define alloy steels. Explain why alloys are added...Ch. 3 - Prob. 3.8QPCh. 3 - Specifically state the shape and size of the...Ch. 3 - What are the typical uses of structural steel?
Ch. 3 - What is the range of thicknesses of cold-formed...Ch. 3 - Why is coil steel used for cold-formed steel...Ch. 3 - If a steel with a 33 ksi yield strength is used...Ch. 3 - Why is reinforcing steel used in concrete? Discuss...Ch. 3 - What is high-performance steel? State two HPS...Ch. 3 - Name three mechanical tests used to measure...Ch. 3 - The following laboratory tests are performed on...Ch. 3 - Sketch the stress-strain behavior of steel, and...Ch. 3 - Three steel bars with a diameter of 25 mm and...Ch. 3 - Three steel bars with a diameter of 0.5 in. and...Ch. 3 - Draw a typical stressstrain relationship for steel...Ch. 3 - Getting measurements from Figure 3.18, determine...Ch. 3 - A steel specimen is tested in tension. The...Ch. 3 - A steel specimen is tested in tension. The...Ch. 3 - A No. 10 steel rebar is tested in tension. By...Ch. 3 - A mild steel specimen originally 300 mm long is...Ch. 3 - A tension stress of 70 ksi was applied on a 12-in....Ch. 3 - A tensile stress is applied along the long axis of...Ch. 3 - A cylindrical steel alloy rod with a 0.5 in....Ch. 3 - A round steel alloy bar with a diameter of 0.75...Ch. 3 - A 19-mm reinforcing steel bar and a gauge length...Ch. 3 - Testing a round steel alloy bar with a diameter of...Ch. 3 - During the tension test on a steel rod within the...Ch. 3 - A grade 36 round steel bar with a diameter of 0.5...Ch. 3 - A high-yield-strength alloy steel bar with a...Ch. 3 - Estimate the cross-sectional area of a 350S125-27...Ch. 3 - An ASTM A615 grade 60 number 10 rebar with a gauge...Ch. 3 - A 32-mm rebar with a gauge length of 200 mm was...Ch. 3 - A steel pipe having a length of 3 ft. an outside...Ch. 3 - A steel pipe having a length of 1 m, an outside...Ch. 3 - A drill rod with a diameter of 10 mm is made of...Ch. 3 - A drill rod with, a diameter of 1/2 in. is made of...Ch. 3 - Prob. 3.43QPCh. 3 - An engineering technician performed a tension test...Ch. 3 - A Charpy V Notch (CVN) test was performed on a...Ch. 3 - Prob. 3.46QPCh. 3 - Prob. 3.47QPCh. 3 - How can the flaws in steel and welds be detected?...Ch. 3 - Determine the welding zone classification of A36...Ch. 3 - Briefly define steel corrosion. What are the four...Ch. 3 - Discuss the main methods used to protect steel...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- At a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; a = 14.4 x 10-6/°F] bar with a width of 3 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; a = 9.6 × 10-6/°F] bar with a width of 2 in. and a thickness of 0.75 in. The supports at A and Care rigid. Determine the lowest temperature at which the two bars contact each other. (1) 3 in. 32 in. 105.3°F 75.3°F O 147.3°F 86.6°F 113.4°F B ↑ 2 in. ↓ (2) 44 in. 0.04-in. gaparrow_forwardAt a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; a = 13.4 x 10-6/°F] bar with a width of 3 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; a = 10.1 x 10-6/°F] bar with a width of 2 in. and a thickness of 0.75 in. The supports at A and Care rigid. Determine the lowest temperature at which the two bars contact each other. (1) ↑ 3 in. 32 in. O 75.9°F O 146.5°F O 105.8°F O 122.3°F O 111.3°F 2 in. (2) 44 in. -0.04-in. gaparrow_forwardAt a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; a = 12.7 x 10-6/°F] bar with a width of 3 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; a = 8.6 x 10-6/°F] bar with a width of 2 in. and a thickness of 0.75 in. The supports at A and C are rigid. Determine the lowest temperature at which the two bars contact each other. (1) 3 in. 32 in. 90.2°F O 69.9°F 139.2°F 103.5°F O 111.0°F B ↑ 2 in. ↓ 44 in. -0.04-in. gaparrow_forward
- 2arrow_forwardAt a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; a = 12.3 × 106/°F] bar with a width of 3 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; a = 8.9 x 10-6/°F] bar with a width of 2 in. and a thickness of 0.75 in. The supports at A and C are rigid. Determine the lowest temperature at which the two bars contact each other. (1) 3 in. 32 in. O 80.1°F O 118.6°F O 150.7°F O 132.9°F O 110.9°F B 2 in. 44 in. 0.04-in. gaparrow_forwardStress in segment bronze and steelarrow_forward
- At a temperature of 60°F, a 0.04 in. gap exists between the ends of the two bars shown in the figure. Bar (1) is an aluminum alloy [E=10000 ksi; v=0.32; a= 12.5 x10^-6/,°F] bar with a width of 3 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E= 28000 ksi; v=0.12; a=9.6x10^-6/°F] bar with a width of 2 in and a thickness of 0.75 in. The supports at A and C are rigid. Determine the normal stress in bar (1) at a temperature of 380°F. Answer in ksiarrow_forwardPlease kindly give me right answer Note: this is not an assignment questionarrow_forwardAt a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown in the figure. Bar (1) is an aluminum alloy (E-10,000 ksi; u= 0,32; a= 12.5 x10°/°F] bar with a width of 3 in, and a thickness of 0.75 in. Bar (2) is a stainless steel |E-28,000 ksi; u=0.12; a=9.6x10°/°F] bar with a width of 2 in. and a thickness of 0.75 in. The supports at A and C are rigid. Determine the normal stress in bar (1) at a temperature of 450°Farrow_forward
- Distinction between the semisolid and the solid state.arrow_forwardMaterials, properties and testing Describe the effect bend testing have on the thermal properties of steel.arrow_forwardWith the help of a diagram, contrast the stress-strain relationship with respect to ceramic and metalsWith the help of a diagram, contrast the stress-strain relationship with respect to ceramic and metalsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning
How Cast Iron Pans Are Made — How to Make It; Author: Eater;https://www.youtube.com/watch?v=aIBt0uFwjY8;License: Standard Youtube License