Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 3.13QP
If a steel with a 33 ksi yield strength is used for a cold-formed shape, what would be the approximate yield strength of the deformed corner after cold-forming?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If a steel with a 33ksi yield strength is used for a cold-formed shape, what would be the
approximate yield strength of the deformed corner after cold-forming?
Sketch the stress–strain behavior of steel, and identify different levels of strength. What is a typical value for yield strength of mild steel? What is theeffect of increasing the carbon content in steel on each of the each of thefollowing items?a. Yield strengthb. Modulus of elasticityc. Ductility
Is it possible to conduct a valid plane strain fracture toughness test for a CrMoV steel alloy under the following conditions: KIC = 53 MPa√m , σys = 620 MPa, W = 6 cm, and plate thickness B = 2.5 cm?
Chapter 3 Solutions
Materials for Civil and Construction Engineers (4th Edition)
Ch. 3 - What is the chemical composition of steel? What is...Ch. 3 - Why does the ironcarbon phase diagram go only to...Ch. 3 - Draw a simple ironcarbon phase diagram showing the...Ch. 3 - What is the typical maximum percent of carbon in...Ch. 3 - Calculate the amounts and compositions of phases...Ch. 3 - Briefly discuss four heat treatment methods to...Ch. 3 - Define alloy steels. Explain why alloys are added...Ch. 3 - Prob. 3.8QPCh. 3 - Specifically state the shape and size of the...Ch. 3 - What are the typical uses of structural steel?
Ch. 3 - What is the range of thicknesses of cold-formed...Ch. 3 - Why is coil steel used for cold-formed steel...Ch. 3 - If a steel with a 33 ksi yield strength is used...Ch. 3 - Why is reinforcing steel used in concrete? Discuss...Ch. 3 - What is high-performance steel? State two HPS...Ch. 3 - Name three mechanical tests used to measure...Ch. 3 - The following laboratory tests are performed on...Ch. 3 - Sketch the stress-strain behavior of steel, and...Ch. 3 - Three steel bars with a diameter of 25 mm and...Ch. 3 - Three steel bars with a diameter of 0.5 in. and...Ch. 3 - Draw a typical stressstrain relationship for steel...Ch. 3 - Getting measurements from Figure 3.18, determine...Ch. 3 - A steel specimen is tested in tension. The...Ch. 3 - A steel specimen is tested in tension. The...Ch. 3 - A No. 10 steel rebar is tested in tension. By...Ch. 3 - A mild steel specimen originally 300 mm long is...Ch. 3 - A tension stress of 70 ksi was applied on a 12-in....Ch. 3 - A tensile stress is applied along the long axis of...Ch. 3 - A cylindrical steel alloy rod with a 0.5 in....Ch. 3 - A round steel alloy bar with a diameter of 0.75...Ch. 3 - A 19-mm reinforcing steel bar and a gauge length...Ch. 3 - Testing a round steel alloy bar with a diameter of...Ch. 3 - During the tension test on a steel rod within the...Ch. 3 - A grade 36 round steel bar with a diameter of 0.5...Ch. 3 - A high-yield-strength alloy steel bar with a...Ch. 3 - Estimate the cross-sectional area of a 350S125-27...Ch. 3 - An ASTM A615 grade 60 number 10 rebar with a gauge...Ch. 3 - A 32-mm rebar with a gauge length of 200 mm was...Ch. 3 - A steel pipe having a length of 3 ft. an outside...Ch. 3 - A steel pipe having a length of 1 m, an outside...Ch. 3 - A drill rod with a diameter of 10 mm is made of...Ch. 3 - A drill rod with, a diameter of 1/2 in. is made of...Ch. 3 - Prob. 3.43QPCh. 3 - An engineering technician performed a tension test...Ch. 3 - A Charpy V Notch (CVN) test was performed on a...Ch. 3 - Prob. 3.46QPCh. 3 - Prob. 3.47QPCh. 3 - How can the flaws in steel and welds be detected?...Ch. 3 - Determine the welding zone classification of A36...Ch. 3 - Briefly define steel corrosion. What are the four...Ch. 3 - Discuss the main methods used to protect steel...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A batch of casted mild steel has a modulus of elasticity of 200 GPa and a yield strength of 250 MPa. Calculate for its modulus of resilience. After cold working the steel, the yield strength increases to 310 MPa. Calculate for the percent reduction in the average grain diameter given σo = 70 MPa and k = 0.74.arrow_forwardThe aluminum (E=15x10^10psi, α=11.6x10^-6/°F) shell is fully bonded to the brass (E=10.6x10^6psi, α=12.9x10^-6/°F) sore, and the assembly is unstressed at a temperature of 78°F. Considering only axial deformations, determine the stress when the temperature reaches 180°F (a) in the brass core (b) in the aluminum shellarrow_forwardA steel specimen is tested in tension. The specimen is 50 mm wide by 25 mm thick in the test region.The specimen yields at a load of 160 kN and fractures at 215 kN. Determine the tensile stress at fracture.arrow_forward
- i need quickly please please please Which of these cast iron would allow the greatest amount of plastic deformation before fracture . Nodular cast iron Grey cast iron White cast iron None of them can be worked. If the diameter of steel specimen stretched by tension load is doubled , then it’s tensile strength will be Halved Remain unaffected Doubled Become four times Temperature is proportional with Percent of elongation Tensile strength Modulus of elasticity All above The tensile strength of a steel specimen that have a 182 HB , equals to 490 MPa 910 MPa 627 MPa Not given…arrow_forwardDuring a tensile test on a specimen of steel the following data was recorded diameter of the specimen is 6.6mm,gage length 5mm,elongation of a load of 6.0KN is 0.043mm.load at yield point is 9.7KN at failure is 14.2KN ,reduction of the area is 45 percent. Calculate Young's modulus of elasticity, the yield stress and the ultimate stressarrow_forwardA nondestructive testing program for a component made of 1040 steel can ensure that no flaws greater than 1 mm will exist. Will this inspection program be effective in preventing fast fracture? The steel of interest has a fracture toughness of Klc =120 MPa √m, a tensile modulus of E=207 GPa, a yield strength = 290 MPa, and an ultimate tensile strength of 520 MPa.arrow_forward
- A steel specimen having a modulus of elasticity equal to 29x103ksi has a width of 1.0in and thickness of 0.25in. During the tensile strength testing, the specimen yielded at 12.5kips and fractured at 17.5 kips. Compute the value of the tensile stresses at yield and fracture.arrow_forwardDo soonarrow_forwardA steel specimen is tested in tension. The specimen is 1.0 in. wide by 0.25 in. thick in the test region. By monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of 12.5 kips and fractured at 17.5 kips.a. Determine the tensile stresses at yield and at fracture.b. Estimate how much increase in length would occur at 60% of the yield stress in a 2-in. gauge length.arrow_forward
- A steel specimen is tested in tension. The specimen is 1.0 in. wide by 0.25 in. thick in the test region. By monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of 12.5 kips and fractured at 17.5 kips. a. Determine the tensile stresses at yield and at fracture. b. Estimate how much increase in length would occur at 60% of the yield stress in a 2-in. gauge length. Step-by-step solution: Step 1 of 4 Given that: Width of the specimen, b = 1 in Thickness of the specimen, t = 0.25 in Yield load on the specimen, Py = 12.5 kips Fracture load on the specimen, Pf = 17.5 kips Gauge length, L = 2 in Percentage of yield stress = 60%arrow_forwardd) No increase Which of the following is not a property of steel materials? C a) Homogeneous and isotropic b) Linearly elastic stress-strain behavior c) Recyclable d) Fire-resistantarrow_forwardTask (3) you are asked to perform tensile test on specimens of two different materials (A and B) and you obtained the stress-strain diagram of the two specimens as shown in Figure 2: 400 350 300 250 Material A 200 150 100 50 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 Strain (mm/mm) 50 Material B 30 20 10 0.02 0.04 0.06 0.08 0.1 Strain (mm/mm) Figure 2: Tensile Test Analysis Stress (MPa) Stress (MPa)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
The History of Iron and Steel; Author: Real Engineering;https://www.youtube.com/watch?v=7E__zqy6xcw;License: Standard Youtube License