Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 3.29QP
A cylindrical steel alloy rod with a 0.5 in. diameter is subjected to tension. Determine the magnitude of the load required to produce a 10-4 in. change in diameter if the deformation is entirely elastic. Assume a Young’s modulus of 30 × 106 psi and a Poisson's ratio of 0.27.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A cylindrical steel alloy rod with a 0.5 in. diameter is subjected to tension.Determine the magnitude of the load required to produce a 10-4 in. change in diameter if the deformation is entirely elastic. Assume a Young’s modulus of 30 * 106 psi and a Poisson’s ratio of 0.27.
A steel bar, whose cross section is 0.60 inch by 4.10 inches, was tested in tension. An axial load of P = 31,025 lb. produced a deformation of 0.115 inch over a gauge length of 2.10 inches and a decrease of 0.0080 inch in the 0.60-inch thickness of the bar.
a. Determine the lateral strain.
b. Determine the axial strain.
c. Determine the Poisson’s ratio v.
d. Determine the decrease in the 4.05-in. cross-sectional dimension (in inches).
30.
An aluminum alloy rod has a circular cross section with a diameter of 8mm. The rod
is subjected to a tensile load of 5kN. Assume that the material is in the elastic region
and E=69 GPa If Poisson's Ratio is 0.33, what will be the lateral strain?
E=68 v=-e(lateral) e(axial)
Chapter 3 Solutions
Materials for Civil and Construction Engineers (4th Edition)
Ch. 3 - What is the chemical composition of steel? What is...Ch. 3 - Why does the ironcarbon phase diagram go only to...Ch. 3 - Draw a simple ironcarbon phase diagram showing the...Ch. 3 - What is the typical maximum percent of carbon in...Ch. 3 - Calculate the amounts and compositions of phases...Ch. 3 - Briefly discuss four heat treatment methods to...Ch. 3 - Define alloy steels. Explain why alloys are added...Ch. 3 - Prob. 3.8QPCh. 3 - Specifically state the shape and size of the...Ch. 3 - What are the typical uses of structural steel?
Ch. 3 - What is the range of thicknesses of cold-formed...Ch. 3 - Why is coil steel used for cold-formed steel...Ch. 3 - If a steel with a 33 ksi yield strength is used...Ch. 3 - Why is reinforcing steel used in concrete? Discuss...Ch. 3 - What is high-performance steel? State two HPS...Ch. 3 - Name three mechanical tests used to measure...Ch. 3 - The following laboratory tests are performed on...Ch. 3 - Sketch the stress-strain behavior of steel, and...Ch. 3 - Three steel bars with a diameter of 25 mm and...Ch. 3 - Three steel bars with a diameter of 0.5 in. and...Ch. 3 - Draw a typical stressstrain relationship for steel...Ch. 3 - Getting measurements from Figure 3.18, determine...Ch. 3 - A steel specimen is tested in tension. The...Ch. 3 - A steel specimen is tested in tension. The...Ch. 3 - A No. 10 steel rebar is tested in tension. By...Ch. 3 - A mild steel specimen originally 300 mm long is...Ch. 3 - A tension stress of 70 ksi was applied on a 12-in....Ch. 3 - A tensile stress is applied along the long axis of...Ch. 3 - A cylindrical steel alloy rod with a 0.5 in....Ch. 3 - A round steel alloy bar with a diameter of 0.75...Ch. 3 - A 19-mm reinforcing steel bar and a gauge length...Ch. 3 - Testing a round steel alloy bar with a diameter of...Ch. 3 - During the tension test on a steel rod within the...Ch. 3 - A grade 36 round steel bar with a diameter of 0.5...Ch. 3 - A high-yield-strength alloy steel bar with a...Ch. 3 - Estimate the cross-sectional area of a 350S125-27...Ch. 3 - An ASTM A615 grade 60 number 10 rebar with a gauge...Ch. 3 - A 32-mm rebar with a gauge length of 200 mm was...Ch. 3 - A steel pipe having a length of 3 ft. an outside...Ch. 3 - A steel pipe having a length of 1 m, an outside...Ch. 3 - A drill rod with a diameter of 10 mm is made of...Ch. 3 - A drill rod with, a diameter of 1/2 in. is made of...Ch. 3 - Prob. 3.43QPCh. 3 - An engineering technician performed a tension test...Ch. 3 - A Charpy V Notch (CVN) test was performed on a...Ch. 3 - Prob. 3.46QPCh. 3 - Prob. 3.47QPCh. 3 - How can the flaws in steel and welds be detected?...Ch. 3 - Determine the welding zone classification of A36...Ch. 3 - Briefly define steel corrosion. What are the four...Ch. 3 - Discuss the main methods used to protect steel...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- The data in Table 1.5.3 were obtained from a tensile test of a metal specimen with a rectangular cross section of 0.2011in.2 in area and a gage length (the length over which the elongation is measured) of 2.000 inches. The specimen was not loaded to failure. a. Generate a table of stress and strain values. b. Plot these values and draw a best-fit line to obtain a stress-strain curve. c. Determine the modulus of elasticity from the slope of the linear portion of the curve. d. Estimate the value of the proportional limit. e. Use the 0.2 offset method to determine the yield stress.arrow_forwardThe results of a tensile test are shown in Table 1.5.2. The test was performed on a metal specimen with a circular cross section. The diameter was 3 8 inch and the gage length (The length over which the elongation is measured) was 2 inches. a. Use the data in Table 1.5.2 to produce a table of stress and strain values. b. Plot the stress-strain data and draw a best-fit curve. c. Compute the, modulus of elasticity from the initial slope of the curve. d. Estimate the yield stress.arrow_forward3. The distribution of stress in an aluminum machine component is given (in megapascals) by Ox = y + z? Oy = x + z Oz = 3x + y Txy = 3z2 Tyz = x Txz = %3D Calculate the state of strain at a point positioned at (1,2,4). Use E=70 GPa and v = 0.3arrow_forward
- An aluminum alloy rod has a circular cross section with a diameter of 8 mm. This rod is subjected to a tensile load of 4 kN. Assume that the material is within the elastic region and E = 69 GPa. a. What will be the lateral strain if Poisson’s ratio is 0.33? b. What will be the diameter after load application?arrow_forwardCalculate the stress and strain at each force interval. Plot a graph of the stress-strain curve. Estimate the yield point of the steel and note its location on the curve. Estimate the ultimate strength of the steel and note its location on the curve.arrow_forwardA bar of solid circular cross section is loaded in tension by forces P (see figure). P L The bar has a length L = 14.0 in. and diameter d = 0.65 in. The material is a magnesium alloy having a modulus of elasticity E = 6.4 x 106 psi. The allowable stress in tension is allow = 17,300 psi, and the elongation of the bar must not exceed 0.04 in. What is the allowable value of the forces P (in lb)?arrow_forward
- SITUATION. As shown in the figure below, a rigid bar with negligible mass is pinned at O and attached to two vertical rods. Assume that the rods were initially stress-free. Allowable stress in steel is 120 MPa and in bronze is 60 MPa. For this problem, a = 1.8m; b = 1.3m; c= 1.7m. a b C P Steel: A-900 mm² Bronze: A=1200 mm² E = 83 GPa L=2.0 m E = 200 GPa L=1.5m What is the value of P without exceeding the allowable stress of bronze, in kN? O 161 O 174 O 145 124 4arrow_forwardSITUATION. As shown in the figure below, a rigid bar with negligible mass is pinned at O and attached to two vertical rods. Assume that the rods were initially stress-free. Allowable stress in steel is 120 MPa and in bronze is 60 MPa. For this problem, a = 1.8m; b = 1.3m; c= 1.7m. a b I Steel: A 900 mm Bronze: A E 200 GPa E 83 GPa L-2.0m L=1.5m What is the value of P without exceeding the allowable stress of steel, in KN? 230 250 280 340 1200 mmarrow_forwardSolid mechanicsarrow_forward
- A steel with E = 29 000 ksi with a rectangular cross-section is bent over a rigid mandrel with R = 15 in as shown in the figure. If the maximum flexural stress in the bar is not to exceed the yield strength of 36 ksi, determine the allowable thickness h of the bar.arrow_forward2. Given a 5 mm diameter steel wire, which is 4 meters long, carries an axial tensile load P. Find the maximum safe value of P if the deformation of the wire is limited to 5.5 mm and the allowable normal stress of the wire is 280 MPa. Use 200 000 MPa for the modulus of elasticity of steel.arrow_forwardSTRAINarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage LearningMaterials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
The History of Iron and Steel; Author: Real Engineering;https://www.youtube.com/watch?v=7E__zqy6xcw;License: Standard Youtube License