Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 3.28QP
A tensile stress is applied along the long axis of a cylindrical steel rod with a diameter of 10 mm. If the deformation is entirely elastic, determine the magnitude of the load required to produce a 5 × 10-3 mm change in diameter. Assume a modulus of elasticity of 200 GPa and a Poisson’s ratio of 0.27.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A steel bar, whose cross section is 0.60 inch by 4.10 inches, was tested in tension. An axial load of P = 31,025 lb. produced a deformation of 0.115 inch over a gauge length of 2.10 inches and a decrease of 0.0080 inch in the 0.60-inch thickness of the bar.
a. Determine the lateral strain.
b. Determine the axial strain.
c. Determine the Poisson’s ratio v.
d. Determine the decrease in the 4.05-in. cross-sectional dimension (in inches).
A tensile stress is applied along the long axis of a cylindrical steel rod with a diameter of 10 mm. If the deformation is entirely elastic, determine the magnitude of the load required to produce a 5 * 10-3 mm change in diameter.Assume a modulus of elasticity of 200 GPa and a Poisson’s ratio of 0.27.
2. A steel bar, whose cross section is 0.55 inch by 4.05 inches, was tested in
tension. An axial load of P = 30,500 lb. produced a deformation of 0.105 inch over
a gauge length of 2.05 inches and a decrease of 0.0075 inch in the 0.55-inch
thickness of the bar.
Determine the lateral strain. *
Your answer
Determine the axial strain.
Your answer
Determine the Poisson's ratio v.
*
Your answer
Determine the decrease in the 4.05-in. cross-sectional dimension (in inches). *
Your answer
Chapter 3 Solutions
Materials for Civil and Construction Engineers (4th Edition)
Ch. 3 - What is the chemical composition of steel? What is...Ch. 3 - Why does the ironcarbon phase diagram go only to...Ch. 3 - Draw a simple ironcarbon phase diagram showing the...Ch. 3 - What is the typical maximum percent of carbon in...Ch. 3 - Calculate the amounts and compositions of phases...Ch. 3 - Briefly discuss four heat treatment methods to...Ch. 3 - Define alloy steels. Explain why alloys are added...Ch. 3 - Prob. 3.8QPCh. 3 - Specifically state the shape and size of the...Ch. 3 - What are the typical uses of structural steel?
Ch. 3 - What is the range of thicknesses of cold-formed...Ch. 3 - Why is coil steel used for cold-formed steel...Ch. 3 - If a steel with a 33 ksi yield strength is used...Ch. 3 - Why is reinforcing steel used in concrete? Discuss...Ch. 3 - What is high-performance steel? State two HPS...Ch. 3 - Name three mechanical tests used to measure...Ch. 3 - The following laboratory tests are performed on...Ch. 3 - Sketch the stress-strain behavior of steel, and...Ch. 3 - Three steel bars with a diameter of 25 mm and...Ch. 3 - Three steel bars with a diameter of 0.5 in. and...Ch. 3 - Draw a typical stressstrain relationship for steel...Ch. 3 - Getting measurements from Figure 3.18, determine...Ch. 3 - A steel specimen is tested in tension. The...Ch. 3 - A steel specimen is tested in tension. The...Ch. 3 - A No. 10 steel rebar is tested in tension. By...Ch. 3 - A mild steel specimen originally 300 mm long is...Ch. 3 - A tension stress of 70 ksi was applied on a 12-in....Ch. 3 - A tensile stress is applied along the long axis of...Ch. 3 - A cylindrical steel alloy rod with a 0.5 in....Ch. 3 - A round steel alloy bar with a diameter of 0.75...Ch. 3 - A 19-mm reinforcing steel bar and a gauge length...Ch. 3 - Testing a round steel alloy bar with a diameter of...Ch. 3 - During the tension test on a steel rod within the...Ch. 3 - A grade 36 round steel bar with a diameter of 0.5...Ch. 3 - A high-yield-strength alloy steel bar with a...Ch. 3 - Estimate the cross-sectional area of a 350S125-27...Ch. 3 - An ASTM A615 grade 60 number 10 rebar with a gauge...Ch. 3 - A 32-mm rebar with a gauge length of 200 mm was...Ch. 3 - A steel pipe having a length of 3 ft. an outside...Ch. 3 - A steel pipe having a length of 1 m, an outside...Ch. 3 - A drill rod with a diameter of 10 mm is made of...Ch. 3 - A drill rod with, a diameter of 1/2 in. is made of...Ch. 3 - Prob. 3.43QPCh. 3 - An engineering technician performed a tension test...Ch. 3 - A Charpy V Notch (CVN) test was performed on a...Ch. 3 - Prob. 3.46QPCh. 3 - Prob. 3.47QPCh. 3 - How can the flaws in steel and welds be detected?...Ch. 3 - Determine the welding zone classification of A36...Ch. 3 - Briefly define steel corrosion. What are the four...Ch. 3 - Discuss the main methods used to protect steel...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- The data in Table 1.5.3 were obtained from a tensile test of a metal specimen with a rectangular cross section of 0.2011in.2 in area and a gage length (the length over which the elongation is measured) of 2.000 inches. The specimen was not loaded to failure. a. Generate a table of stress and strain values. b. Plot these values and draw a best-fit line to obtain a stress-strain curve. c. Determine the modulus of elasticity from the slope of the linear portion of the curve. d. Estimate the value of the proportional limit. e. Use the 0.2 offset method to determine the yield stress.arrow_forwardThe results of a tensile test are shown in Table 1.5.2. The test was performed on a metal specimen with a circular cross section. The diameter was 3 8 inch and the gage length (The length over which the elongation is measured) was 2 inches. a. Use the data in Table 1.5.2 to produce a table of stress and strain values. b. Plot the stress-strain data and draw a best-fit curve. c. Compute the, modulus of elasticity from the initial slope of the curve. d. Estimate the yield stress.arrow_forwardIf length of rod is 2 m and a radius of 20 mm is made of high-strength steel. The rod is subjected to a torque T, which produces a shear stress below the proportional limit. If the cross section at one end is rotated 45 degrees in relation to the other end, and the shear modulus G of the material is 90 GPa, calculate the amount of applied torque?arrow_forward
- Solid mechanicsarrow_forward2. Given a 5 mm diameter steel wire, which is 4 meters long, carries an axial tensile load P. Find the maximum safe value of P if the deformation of the wire is limited to 5.5 mm and the allowable normal stress of the wire is 280 MPa. Use 200 000 MPa for the modulus of elasticity of steel.arrow_forward2. A steel bar, whose cross section is 0.55 inch by 4.05 inches, was tested in tension. An axial load of P = 30,500 lb. produced a deformation of 0.105 inch over a gauge length of 2.05 inches and a decrease of 0.0075 inch in the 0.55-inch thickness of the bar. * Determine the lateral strain. Your answer Determine the axial strain. Your answer Determine the Poisson's rati v. Your answer Determine the decrease in the 4.05-in. cross-sectional dimension (in inches). * Your answerarrow_forward
- A mild steel bar of square cross-section 40 mm x 40 mm is 400 mm long it is subjected to a longitudinal tensile stress of 440 N/mm² and lateral compressive stress is 200 N/mm² in perpendicular directions. E = 2 x 105 N/mm², μ = 0.3. What is the approximate elongation of the bar in the longitudinal direction?arrow_forwardHelp mearrow_forwardPart 2arrow_forward
- A cylindrical specimen of stainless steel having a diameter of 12.8 mm (0.505 in.) and a gauge length of 50.800 mm (2.000 in.) is pulled in tension. Use the load–elongation characteristics shown in the following table: (see attached picture) (a) Plot the data as engineering stress versus engineering strain. (b) Compute the modulus of elasticity. (c) Determine the yield strength at a strain offset of 0.002.(d) Determine the tensile strength of this alloy.e) What is the approximate ductility, in percent elongation? (f) Compute the modulus of resilience.arrow_forward3. The distribution of stress in an aluminum machine component is given (in megapascals) by Ox = y + z? Oy = x + z Oz = 3x + y Txy = 3z2 Tyz = x Txz = %3D Calculate the state of strain at a point positioned at (1,2,4). Use E=70 GPa and v = 0.3arrow_forwardA bar of length 2.0m is made of a structural steel having the stress-strain diagram shown in the figure. The yield stress of the steel is 250 MPa and the slope of the initial linear part of the stress-strain curve (modulus of elasticity) is 200GPa. The bar is loadded axially until it elongates 6.5mm, and then the load is removed. How does the final length of the bar compare with its original length? (Hint: Use the concepts illustrated in figure below)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage LearningMaterials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
The History of Iron and Steel; Author: Real Engineering;https://www.youtube.com/watch?v=7E__zqy6xcw;License: Standard Youtube License