![Conceptual Physics: The High School Physics Program](https://www.bartleby.com/isbn_cover_images/9780133647495/9780133647495_largeCoverImage.gif)
Concept explainers
To Explain: The optical fibers are called light pipes.
![Check Mark](/static/check-mark.png)
Explanation of Solution
Introduction:
An optical fiber transmits light along its axis by the phenomenon of total internal reflection. Optical fiber consists of a core that is surrounded by a cladding layer. Both core and cladding are made up of dielectric materials.
Explanation:
Optical fiber works on the principle of total internal reflection such that the light signal can transmit from one place to another place with a minute loss of energy (negligible loss). The transmission losses are
An optical fiber is used to transmit light from one place to another place so they are called light pipes.
The light travels in a core in a guided manner, thereby the communication through the optical fiber called as an optical waveguide.
Conclusion:
The optical fiber is called a light pipe because it carries light from one place to another. Also, the light transmitted in the optical fiber in a guided manner so it is also known as a waveguide.
Chapter 29 Solutions
Conceptual Physics: The High School Physics Program
Additional Science Textbook Solutions
Microbiology with Diseases by Body System (5th Edition)
Introductory Chemistry (6th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Applications and Investigations in Earth Science (9th Edition)
Biology: Life on Earth (11th Edition)
Microbiology: An Introduction
- Please solve and answer the question correctly. Thank you!!arrow_forwardDetermine the moment of force F1={−F1={−2i+i+ 4 jj −−8k}lbk}lb about the zz axis. Express your answer in pound-inches to three significant figures.arrow_forwardplease solve and answer the question correctly. Thank you!!arrow_forward
- Part I. Addition of vectors a) using the graphical method, add 3.00 cm at 180° and 5.00 cm at 53.1°. Draw the vectors b) using the component method. 2 add 3.00 cm at 180° and 5.00cm at 53.10 again. Include all calculations below. c) what is the magnitude and direction of the resultant nd equilibrant forces of 1.00N force at 30.0° nd 1.00 N force at 150°?arrow_forwardPart I. Addition of vectors a) using the graphical method, add 3.00 cm at 180° and 5.00 cm at 53.1°. Draw the vectors b) using the component method. 2 add 3.00 cm at 180° and 5.00cm at 53.10 again. Include all calculations below. c) what is the magnitude and direction of the resultant nd equilibrant forces of 1.00N force at 30.0° nd 1.00 N force at 150°?arrow_forwardNo chatgpt plsarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)