College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28.5, Problem 28.3QQ
To determine
The number electrons in Krypton at the next to outer shell.
Expert Solution & Answer
Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video
schedule00:59
Students have asked these similar questions
A neutral atom is designated as 40 18 X. How many (a) protons, (b) neutrons, and (c) electrons does the atom have?
The electron in the hydrogen atom (in its
ground state) orbits the nucleus at a
distance of 0.5292 Å. (a) Calculate the
gravitational force and (b) the
electrostatic force of attraction between
the two. (c) Comment on the magnitude
and the importance of these two forces.
[G, gravitational constant = 6.672 x 10-11 N
m2 kg-2; 4+Єo = 1.113 x 10-10 C2 m-1 J-1]
Assume the electron in a hydrogen atom is 53.0 pm from the nucleus of the atom, which consists of a single proton. (a) calculate the electrical force between the electron and the nucleus. (b) Calculate the gravitational force between the electron and the nucleus. (c) What is the ratio of the gravitational force to the electrical force?
Chapter 28 Solutions
College Physics
Ch. 28.3 - Prob. 28.1QQCh. 28.4 - Prob. 28.2QQCh. 28.5 - Prob. 28.3QQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQ
Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46APCh. 28 - Prob. 47APCh. 28 - Prob. 48APCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 3) Assume that this room was filled with a gas of oxygen molecules O₂ in thermal equilibrium at 0 °C. There are 8 protons and 8 neutrons in the nucleus of an oxygen atom O. You may take the masses of the proton and the neutron to be the same, and ignore the mass of the electrons. 1 atm=1.01x105 N/m², h=1.05x10-34 J-s, mp=1.67x10-27 kg, ka=1.38x10-23 J/K. a) What would the (particle) number density, n, be according to the ideal gas law? b) Compare the number density with the quantum concentration, no, at the same temperature. Is the gas in the classical or quantum regime?arrow_forwardIn the planetary model of the atom where electrons orbit a centralized nucleus, what is the approximate ratio of the radius of the nucleus to that of the electron orbits?arrow_forward(a) Show that if you assume the average nucleus is spherical with a radius r=r0A1/3, and with a mass at A u, then its density is independent at A. (b) Calculate that density in u/fm3 and kg/m3, and compare your results with those found in Example 31.1 for 56Fe.arrow_forward
- Two electrons in the nucleus of a 238U atom are separated by a distance of 8 fm. What is the potential energy of the arrangement? A) 179.77 keVB) 2.25×10 43 eVC) 4.61×10 −33 keVD) 3.596 eVarrow_forwardWhich of the following best describes the atom? I - Large-mass positive charges are found inside the nucleus. II - Smaller-mass negative charges are found outside the nucleus. III - Large-mass neutral charges are found outside the nucleus. O I & II O I & III O II & III O I, II, & IIIarrow_forwardWhat electrostatic force acts between two protons in a nucleus if they are 4×10-15 m apart? Select one: O a. 8.8x109 (attractive) O b. 8.8×10 (repulsive) O c. 14N (repulsive) O d. 14N (attractive)arrow_forward
- Give handwritten answer onlyarrow_forwardAssume that a room at sea level is filled with a gas of nitrogen molecules N2 in thermal equilibrium at -10.0 °C (negative ten degrees Celsius). There are 7 protons and 7 neutrons in the nucleus of a nitrogen atom N. You may take the masses of the proton and the neutron to be the same, and ignore the mass of the electrons. 1 atm=1.01x105 N/m² , h=1.05x10-34 J-s , mp=1.67x10-27 kg, kB = 1.38x10-23 J/K . a) What is the (particle) number density n according to the ideal gas law? b) Compare the number density n with the quantum concentration ng at the same temperature. c) Is the gas in the classical or quantum regime?arrow_forward2.1. A neutral atom has the following electronic configuration: 1s? 2s² 2p° 3s² 3p³ (a). How many electrons are in the M shell? (b). How many protons are in the atomic nucleus? (c). To which group of the periodic table does this element belong?arrow_forward
- An alpha particle with kinetic energy 11.0 Me V makes a collision with lead nucleus, but it is not "aimed" at the center of the lead nucleus, and has an initial nonzero angular momentum (with respect to the stationary lead nucleus) of magnitude L%=pob, where po is the magnitude of the initial momentum of the alpha particle and b=1.50x10-12m (Assume that the lead nucleus remains stationary and that it may be treated as a point charge. The atomic number of lead is 82. The alpha particle is a helium nucleus, with atomic number 2.) Repeat for b=1. 10×10-13 m. Express your answer in meters. ΑΣφ Submit Request Answer Part C Repeat for b=1.50×10-14 m. Express your answer in meters.arrow_forwardThe energy required to remove an inner K-shell electron from a silver atom is 25.6 keV. Compare this electron binding energy (the most tightly bound electron) with the binding energy of the most loosely bound proton of 10747Ag.arrow_forwardAn electron in the hydrogen atom is revolving around nucleus in the orbit of radius 167'me? 4ле? with speed Then the equation of electric current will be h Here m = mass of Electron, e = Charge of electron. 4л? me (A) 4л* me (В) h 32n me (C) 32л те (D) h h harrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning