College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 7CQ
(a)
To determine
The lowest available energy of electron in hydrogen atom.
(b)
To determine
The highest available energy of electron in hydrogen atom.
(c)
To determine
The value of principle number which corresponds to the lowest energy.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
What are the (a) lowest and (b) highest energies in eV available to the electron in a hydrogen atom? (c) What principle quantum number n corresponds to the lowest energy?
(a)
The Lyman series in hydrogen is the transition from energy levels n = 2, 3, 4, ...
to the ground state n =
1. The energy levels are given by
13.60 eV
En
n-
(i)
What is the second longest wavelength in nm of the Lyman series?
(ii)
What is the series limit of the Lyman series?
[1 eV = 1.602 x 1019 J, h = 6.626 × 10-34 J.s, c = 3 × 10° m.s]
%3D
Two emission lines have wavelengts A and + A2, respectively, where AA <<2.
Show that the angular separation A0 in a grating spectrometer is given
aproximately by
(b)
A0 =
V(d/m)-2
where d is the grating constant and m is the order at which the lines are observed.
The electron in a hydrogen atom with anenergy of -0.544 eV is in a subshell with 18 states. (a) What is theprincipal quantum number, n, for this atom? (b) What is the maximum possible orbital angular momentum this atom can have?(c) Is the number of states in the subshell with the next lowestvalue of / equal to 16, 14, or 12? Explain.
Chapter 28 Solutions
College Physics
Ch. 28.3 - Prob. 28.1QQCh. 28.4 - Prob. 28.2QQCh. 28.5 - Prob. 28.3QQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQ
Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46APCh. 28 - Prob. 47APCh. 28 - Prob. 48APCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose two electrons in an atom have quantum numbers n= 2 and L=1 . (a) How many states are possible for those two electrons? (Keep in mind that the electrons are indistinguishable.) (b) If the Pauli exclusion principle did not apply to the electrons, how many states would be possible?arrow_forward(a) For a given value of the principal quantum number n for a hydrogen atom, how many values of the orbital quantum number l are possible? (b) For a given value of , how many values of the orbital magnetic quantum number ml are possible? (c) For a given value of n, how many values of ml are possible?arrow_forwardAn energy of about 21 eV is required to excite an electron in a helium atom from the 1s state to the 2s state. The same transition for the He+ ion requires approximately twice as much energy. Explain.arrow_forward
- A hypothetical atom has only two atomic energy levels, separated by 3.2 eV. Suppose that at a certain altitude in the atmosphere of a star there are 6.1 * 1013/cm3 of these atoms in the higher-energy state and 2.5 * 1015/cm3 in the lower-energy state. What is the temperature of the star’s atmosphere at that altitude?arrow_forwardThe hydrogen atom was initially at the state where n=3 and l=2. It then decays to a lower state releasing a photon. What are the possible photon energies(in [eV]) that may be observed?arrow_forwardChapter 39, Problem 044 A hydrogen atom in a state having a binding energy (the energy required to remove an electron) of -1.51 eV makes a transition to a state with an excitation energy (the difference between the energy of the state and that of the ground state) of 10.200 eV. (a) What is the energy of the photon emitted as a result of the transition? What are the (b) higher quantum number and (c) lower quantum number of the transition producing this emission? Use -13.60 eV as the binding energy of an electron in the ground state. (a) Number Units (b) Number Units (c) Number Unitsarrow_forward
- What is the (a) energy in eV and (b) wavelength in um of a photon that, when absorbed by a hydrogen atom, could cause a transition from the n = 3 to then= 6 energy level?arrow_forwardIf an electron is in the ground state of the hydrogen atom, the probability that its distance from the proton is more than one Bhor radius is approximately 1. 0.68 2. 0.48 3. 0.28 4. 0.91arrow_forwardquantum physicsarrow_forward
- (a) The L→ K transition of an X-ray tube containing a molybdenum (Z = 42) target occurs at a wavelength of 0.0724 nm. Use this information to estimate the screening parameter of the K-shell electrons in molybdenum. [Osmania University]arrow_forwardA hydrogen atom passes through a strong external magnetic field of B= 10 Tesla.A) List the possible quantum states (?, ?, ?l, ?s) for the 3p level.B) Calculate the energies of each of these quantum states.arrow_forwardIn sodium, one of the two yellow lines has a wavelength of 589.76 nm and is the transition from the 2P₁ state to the 2s, 1/2 1/2 state. If a sodium atom is placed in a magnetic field due to the anomalous Zeeman effect, it can be shown that the energy splitting may be determined by V = μBB extgm,. If the magnitude of the external magnetic field is 2.45 T, determine the difference in wavelength (in m) between the shortest and longest wavelength between these two states. 123 Tutorial marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning