College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 22P
(a)
To determine
The number of different wavelengths would be observed in the emission spectrum.
(b)
To determine
The longest wavelength.
(c)
To determine
The longest wavelength belongs in which series.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) What is the wavelength of light for the least energetic photon emitted in the Balmer series of the hydrogen atom spectrum lines? (b) What is the wavelength of the series limit?
An electron is in an infinite square well of width 2.0 nm. What is the wavelength of the emitted photon in nanometers as the electron transitions from the n=8 to the n=4 state? (h = 6.626 × 10-34 J ∙ s, mel = 9.11 × 10-31 kg, 1 eV = 1.60 × 10-19J). Please give your answer with no decimal places.
(a) If one subshell of an atom has 9 electrons in it, what is the minimum value of l ? (b) What is the spectroscopic notation for this atom, if this subshell is part of the n = 3shell?
Chapter 28 Solutions
College Physics
Ch. 28.3 - Prob. 28.1QQCh. 28.4 - Prob. 28.2QQCh. 28.5 - Prob. 28.3QQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQ
Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46APCh. 28 - Prob. 47APCh. 28 - Prob. 48APCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A hypothetical atom has two energy levels, with a transition wavelength between them of 580 nm. In a particular sample at 300 K, 4.0 * 10^20 such atoms are in the state of lower energy. (a) How many atoms are in the upper state, assuming conditions of thermal equilibrium? (b) Suppose, instead, that 3.0*10^20 of these atoms are “pumped” into the upper state by an external process, with 1.0 * 10^20 atoms remaining in the lower state. What is the maxi-mum energy that could be released by the atoms in a single laser pulse if each atom jumps once between those two states (either via absorption or via stimulated emission)?arrow_forwardWhat is the maximum photon wavelength that would free an electron in a hydrogen atom when it is in the n = 8 excited state? (Give the answer in meters.)arrow_forwardThe electrons within the T-system of conjugated hydrocarbons may be treated as particles confined within a one-dimensional box. The lowest energy transition in the spectrum of a polyene hydrocarbon corresponds to excitation of an electron from the highest occupied energy level to the lowest unoccupied level. If the hydrocarbon contains 6 electrons and has a spectral transition at a wavelength of 278 nm, estimate the effective length of the TT-system. The estimated length = nm. Hint: you will need to fill the energy diagram to know which energy levels are involved in the transition. me = 9.110 x 1031 kg (Enter in e-notation, e.g. 1.23e-4, tolerance ±5%)arrow_forward
- What is the energy in eV and wavelength in µm of a photon that, when absorbed by a hydrogen atom, could cause a transition from the n = 4 to the n = 6 energy level? (a) energy in eV? (b) wavelength in µm?arrow_forwardplease help as soon as possiblearrow_forwardUsing the average speed of a gas, (8?????)1/2, determine the average de Broglie wavelength for an He atom at 25 °C and at 500 °C.How fast would the He atom need to travel in order to have the same linear momentum as a 500 nm photon?arrow_forward
- Light of wavelength 196 nm shines on a metal surface. 3.77 eV is required to eject an electron. What is the kinetic energy of (a) the fastest and (b) the slowest ejected electrons? (c) What is the stopping potential for this situation? (d) What is the cutoff wavelength for this metal? (a) Number i Units (b) Number i Units (c) Number Units (d) Number i Unitsarrow_forwardAn electron is contained in a one-dimensional box of length 0.520 nm.(a) Draw an energy-level diagram for the electron for levels up to n = 4. (b) Photons are emitted by the electron making downward transitions that could eventually carry it from the n = 4 state to the n = 1 state. Find the wavelengths of all such photons (in nm). Please help!arrow_forwardAtoms can be ionized by thermal collisions, such as at the high temperatures found in the solar corona. One such ion is Na10+, a sodium atom with only a single electron. (a) By what factor are the energies of its hydrogen-like levels greater than those of hydrogen? (b) What is the wavelength in nm of the first line in this ion's Lyman series? (c) What type of EM radiation is this?arrow_forward
- Singly ionized helium has a single orbiting electron, so the mathematicsof the Bohr hydrogen atom will apply, with one important difference: The charge of the nucleus is twice that of the single proton at the center of a hydrogen atom. This changes the energy levels; the magnitude of each energy is greater than the corresponding Bohr level by a factor of 22 = 4: The Balmer and Lyman series of spectral lines in hydrogen have analogs in singly ionized helium, but at shorter wavelengths; the photons corresponding to these transitions are beyond the visiblelight spectrum. The transitions that end on the n = 4 state produce a set of spectral lines called the Pickering series. The visible-light lines in this series were first seen in the light from certain hot stars, but some of the lines overlap the hydrogen Balmer series lines, so these lines were initially missed. This led to an initial mischaracterization of the source of the lines. The longest wavelength in the hydrogen Balmer series…arrow_forwardSingly ionized helium has a single orbiting electron, so the mathematicsof the Bohr hydrogen atom will apply, with one important difference: The charge of the nucleus is twice that of the single proton at the center of a hydrogen atom. This changes the energy levels; the magnitude of each energy is greater than the corresponding Bohr level by a factor of 22 = 4: The Balmer and Lyman series of spectral lines in hydrogen have analogs in singly ionized helium, but at shorter wavelengths; the photons corresponding to these transitions are beyond the visiblelight spectrum. The transitions that end on the n = 4 state produce a set of spectral lines called the Pickering series. The visible-light lines in this series were first seen in the light from certain hot stars, but some of the lines overlap the hydrogen Balmer series lines, so these lines were initially missed. This led to an initial mischaracterization of the source of the lines. The Paschen series of wavelengths in the hydrogen…arrow_forwardThe wavelengths of the Brackett series for hydrogen are given by n = 5, 6, 7,.... (a) What are the wavelengths of the first three spectral emission lines in this series (in nm)? (Enter them in order of decreasing wavelength.) largest value nm nm smallest value nm (b) In which band of the electromagnetic spectrum do these lines appear? visible light region O infrared region O ultraviolet region O gamma ray region O x-ray regionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON