College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 2P
(a)
To determine
The wavelengths of the first three lines in the Paschen series for hydrogen.
(b)
To determine
The region of the electromagnetic spectrum in which the first lines of wavelengths are appeared.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The wavelengths of the Paschen series for hydrogen are given by
(a) Calculate the wavelengths of the first three lines in this series. (b) Identify the region of the electromagnetic spectrum in which these lines appear.
The wavelengths of the Lyman series for hydrogen are given by = RH(1-2), = 2, 3, 4, ...
1/2
(a) Calculate the wavelengths of the first three lines in this series.
nm
nm
nm
(b) Identify the region of the electromagnetic spectrum in which these lines appear.
O ultraviolet region
O infrared region
O x-ray region
O visible light region
O gamma ray region
The wavelengths of the Brackett series for hydrogen are given by
n = 5, 6, 7,....
(a) What are the wavelengths of the first three spectral emission lines in this series (in nm)? (Enter them in order of decreasing
wavelength.)
largest value
nm
nm
smallest value
nm
(b) In which band of the electromagnetic spectrum do these lines appear?
visible light region
O infrared region
O ultraviolet region
O gamma ray region
O x-ray region
Chapter 28 Solutions
College Physics
Ch. 28.3 - Prob. 28.1QQCh. 28.4 - Prob. 28.2QQCh. 28.5 - Prob. 28.3QQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQ
Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46APCh. 28 - Prob. 47APCh. 28 - Prob. 48APCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Derive an expression for the ratio of X-ray photon frequency for two elements with atomic numbers Z1 and Z2.arrow_forwardplease help as soon as possiblearrow_forwardFind the ratio between the wavelengths of the ‘most energetic’ spectral lines in the Balmer and Paschen series of the hydrogen spectrum.arrow_forward
- What is the maximum photon wavelength that would free an electron in a hydrogen atom when it is in the n = 8 excited state? (Give the answer in meters.)arrow_forwardYou have three metal samples—A, B, and C—that aretantalum (Ta), barium (Ba), and tungsten (W), but you don’tknow which is which. Metal A emits electrons in response to vis-ible light; metals B and C require UV light. (a) Identify metal A,and find the longest wavelength that removes an electron. (b)What range of wavelengths would distinguish B and C? [Thework functions are Ta (6.81x10^-19J), Ba (4.30x10^-19J), andW (7.16x10^-19J)arrow_forwardThe wave function of a hydrogen atom is in an excited state is: -1/2 W221 = ( m6°)"2 (r/9a) exp(-r/3ao) sin0 cose e“. (a) What is the most probable value of r in this state? How does it relate to the Bohr model prediction for the radius? (b) What is the magnitude of the orbital angular momentum in this state? How does it compare with the Bohr model prediction? (c) Find the orientation of the orbital angular momentum in this state. (d) What is the shortest wavelength photon that the atom can emit making an allowed transition? Identify the terminal state (in Whilm form) and justify why the transition is allowed,arrow_forward
- i need the answer quicklyarrow_forwardX-rays of wavelength 1.520×10^−2 nm are scattered from a carbon atom. The wavelength shift is measured to be 3.26×10^−4 nm. a) What is the scattering angle? b) How much energy, in , does each photon impart to each electron?arrow_forwardAn electron is in the nth Bohr orbit of the hydrogen atom. n3 (a) Show that the period of the electron is T = to n³ and determine the numerical value of to. 153 as (b) On average, an electron remains in the n = 2 orbit for approximately 8 us before it jumps down to the n = 1 (ground-state)orbit. How many revolutions does the electron make in the excited state? 8.26e+09 × (c) Define the period of one revolution as an electron year, analogous to an Earth year being the period of the Earth's motion around the Sun. Explain whether we should think of the electron in the n = 2 orbit as "living for a long time."arrow_forward
- Calculate the number of electrons required to to produce radiation at 590 nm, Ng90 having linewidth 50 nm, from a solid rod containing N. = 2 x 1030 atom/m3 at room temperature (30°C). Then determine the percentage of excited electron at 3000°C in order to produce a radiation in the same spectrum range.arrow_forwardEnergy vs wavelength relation is given by, E(eV) =- 1241 Energy of H- 2(nm) atom in the ground state is -13.6 ev as from the relation EeV) =-13.6 (eV). Find that in which transition of hydrogen atom is the wavelength of 486.1 nm produced? To which series does it belong?arrow_forward(a) Using the Bohr model, calculate the speed of the electron in a hydrogen atom in the n = 1, 2, and 3 levels. (b) Calculate the orbital period in each of these levels. (c) The average lifetime of the first excited level of a hydrogen atom is 1.0 * 10-8 s. In the Bohr model, how many orbits does an electron in the n = 2 level complete before returning to the ground level?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax