College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 23P
(a)
To determine
The minimum
( n )
for a hydrogen atom that can be ionized by such a photon.
(b)
To determine
The speed of the electron released from the state when it is far from the nucleus.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Determine the distance between the electron and proton in an atom if the potential energy UU of the electron is 15.2 eV (electronvolt, 1 eV =1.6×10−19 J). Give your answer in Angstrom (1 A = 10-10 m).
Chapter 39, Problem 043
In the ground state of the hydrogen atom, the electron has a total energy of -13.6 ev. What are (a) its kinetic energy and
(b) its potential energy if the electron is a distance 4.0a from the central nucleus? Here a is the Bohr radius.
(a) Number
Units
eV
(b) Number
Units
eV
Assume a hypothetical atom with a nucleus that consists of two positrons (instead of
two protons). Positron has a charge of +1 and the mass of an electron. Write down the
hydrogen like energy of a neutral 2-positrons atom.
Chapter 28 Solutions
College Physics
Ch. 28.3 - Prob. 28.1QQCh. 28.4 - Prob. 28.2QQCh. 28.5 - Prob. 28.3QQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQ
Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46APCh. 28 - Prob. 47APCh. 28 - Prob. 48APCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What are the (a) energy, (b) magnitude of the momentum, and (c) wavelength of the photon emitted when a hydrogen atom undergoes a transition from a state with n = 4 to a state with n = 2? (a) Number 2.55 Units eV (b) Number 1.3617 Units kg-m/s or N-s (c) Number 4.865976353 Units This answer has no unitsarrow_forwardA certain helium ion (Z = 2) contains a single excited electron in the n = 3 quantum state. When this excited electron decays back to its ground state, what is the energy of the emitted photon? Enter the numerical value in units of eV.arrow_forwardIn positron-emission tomography (PET) used in medical research and diagnosis, compounds containing unstable nuclei that emit positrons are introduced into the brain, destined for a site of interest in the brain. When a positron is emitted, it goes only a short distance before coming nearly to rest. It forms a bound state with an electron, called "positronium", which is rather similar to a hydrogen atom. The binding energy of positronium is very small compared to the rest energy of an electron. After a short time the positron and electron annihilate. In the annihilation, the positron and the electron disappear, and all of their rest energy goes into two photons (particles of light) which have zero mass; all their energy is kinetic energy. These high energy photons, called "gamma rays", are emitted at nearly 180° to each other. What energy of gamma ray (in MeV, million electron volts) should each of the detectors be made sensitive to? (The mass of an electron or positron is 9 x 10-31 kg.…arrow_forward
- A 57Fe nucleus at rest emits a 14.0-keV photon. Use conservation of energy and momentum to find the kinetic energy of the recoiling nucleus in electron volts. Use Mc2 = 8.60 × 10-9 J for the final state of the 57Fe nucleus.arrow_forwardA photon is absorbed by a hydrogen atom in the ground state. If the electron is boosted from to the n = 6, what was the energy of the absorbed photon? Give your answer in electron volts (eV).arrow_forwardWhile performing research with gaseous hydrogen at a high enough temperature that the H2 molecules have dissociated to H atoms, you notice that atoms in your hydrogen sample are ionized by photons of energy 2.28 eV that are incident on the sample. You wish to determine two things: (a) the minimum value for n for the hydrogen atoms that are being ionized, and (b) the speed of the electrons released in the ionization process when they are far from the atom.arrow_forward
- The Bohr model correctly predicts the main energy levels not only for atomic hydrogen but also for other "one-electron" atoms where all but one of the atomic electrons has been removed, such as in He+ (one electron removed) or Li++ (two electrons removed). The negative muon (μ−)behaves like a heavy electron, with the same charge as the electron but with a mass 207 times as large as the electron mass. As a moving μ− comes to rest in matter, it tends to knock electrons out of atoms and settle down onto a nucleus to form a "one-muon" atom. For a system consisting of a nucleus of iridium (Ir192 with 77 protons and 115 neutrons) and just one negative muon, predict the energy in eV of a photon emitted in a transition from the first excited state to the ground state. The high-energy photons emitted by transitions between energy levels in such "muonic atoms" are easily observed in experiments with muons.arrow_forwardAn electron with kinetic energy of 12.50 eV hits a hydrogen atom in its ground state. (a)Sketch the hydrogen energy level diagram, showing the transition to all possible excited state. (b) Find all the possible kinetic energies of the outgoing electron. (c) In the same sketch as part (a), draw all possible transitions when the atom relaxes and emits a photon. (d) Find the wavelengths of all the possible emission photons.arrow_forwardAn atom (not a hydrogen atom) absorbs a photon whose associated frequency is 6.2 * 1014 Hz. By what amount does the energy of the atom increase?arrow_forward
- Help Mearrow_forwardAlpha particles of kinetic energy 5.4 MeV are incident at a rate of 3.2 x 107 per second on a copper foil of thickness 3.2 x 10-6 m. A circular detector of diameter 1.0 cm is placed 13 cm from the foil at an angle of 30° with the direction of the incident alpha particles. At what rate does the detector measure scattered alpha particles? (The molar mass of copper is 63.5 g/mol and its density is 8.9 g/cm³.) Additional Materials Bookarrow_forwardIn an X-ray photoelectron experiment, a photon of wavelength 150 pm ejects an electron from the inner shell of an atom and it emerges with a speed of 21.4 × 106 m s−1. Calculate the binding energy of the electron.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON