College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 21P
(a)
To determine
The wavelength of the photon created in the transition.
(b)
To determine
The recoil speed of the hydrogen atom when the photon emits.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
(a) If an electron makes a transition from the n = 6 Bohr orbit to the n = 2 orbit, determine the wavelength of the photon created in the process.
416
nm
(b) Assuming that the atom was initially at rest, determine the recoil speed of the hydrogen atom when this photon is emitted.
(a) If an electron makes a transition from the n = 7 Bohr orbit to the n = 3 orbit, determine the wavelength of the photon created in the process. nm(b) Assuming that the atom was initially at rest, determine the recoil speed of the hydrogen atom when this photon is emitted. m/s
5. (a) By considering the case where an atom is enclosed within a cavity containing black body
radiation at temperature T, show that the Einstein A and B coefficients are related to each
other through the following relationships:
9,B12 = 92B21,
8nhv³
- B21,
A21
where g, and g, are the degeneracies of the two levels respectively. The spectral energy
density of black body radiation is given by
8thv³
u(v)
c exp(hv/kgT) –1
1
where kg is Boltzmann's constant.
(b) Explain why the effective temperature of the laser levels must be negative in order for a
laser to oscillate.
(c) The degeneracies of the upper and lower levels of the 488.0 nm line of the argon ion laser
are 6 and 4, respectively. Deduce the effective temperature of the laser levels when the
population of the upper level is twice that of the lower level.
(d) Describe how population inversion is achieved in a semiconductor laser diode.
(e) A certain semiconductor laser diode has a length of 0.5 mm and has a high reflection
coating…
Chapter 28 Solutions
College Physics
Ch. 28.3 - Prob. 28.1QQCh. 28.4 - Prob. 28.2QQCh. 28.5 - Prob. 28.3QQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQ
Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46APCh. 28 - Prob. 47APCh. 28 - Prob. 48APCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose an electron in a hydrogen atom makes a transition from the (n+1) th orbit to the nth orbit. Is the wavelength of the emitted photon longer for larger values of n, or for smaller values of n?arrow_forwardWhen a hydrogen atom is in its ground state, what are the shortest and longest wavelengths of the photons it can absorb without being ionized?arrow_forwardWhat is the de Brogue wavelength of a proton whose kinetic energy is 2.0 MeV? 10.0 MeV?arrow_forward
- What is the maximum kinetic energy of an electron such that a collision between the electron and a stationary hydrogen atom in its ground state is definitely elastic?arrow_forwardA triply ionized atom of betyllium Be3+ is a hydrogen-like ion. When Be3+ is in one of its excited states, its radius in this nth state is exactly the same as the radius of the first Bohr orbit of hydrogen. Find n and compute the ionization energy for this state of Be3+ .arrow_forwardA photon of energy 5.0 keV collides with a stationary electron and is scattered at an angle of 60°. What is the energy acquired by the electron in the collision?arrow_forward
- If, in a hydrogen atom, an electron moves to an orbit with a larger radius, does the energy of the hydrogen atom increase or decrease?arrow_forwardAt what velocity will an electron have a wavelength of 1.00 m?arrow_forwardDiscuss why the allowed energies of the hydrogen atom are negative.arrow_forward
- The Balmer series for hydrogen was discovered before either the Lyman or the Paschen series. Why?arrow_forwardAn electron of a hydrogen atom initially in the third excited state emits a photon and ends up in the ground state. (i) What is the energy in eV and in Joules of the emitted photon? (ii) What is the frequency of the emitted photon?arrow_forwardAn atom in an excited state 1.95 eV above the ground state remains in that excited state 1.15 us before moving to the ground state. (a) Find the frequency of the emitted photon. THz (b) Find the wavelength of the emitted photon. nm (c) Find the approximate uncertainty in energy of the photon. ΔΕΣ peVarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill