College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 13P
To determine
The expression of the electronic speed in nth Bohr orbit.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
As per Bohr model of a hydrogen atom for a stable orbit centripetal, Coulomb, and all forces
should be in equilibrium. Therefore, for an electron with mass me and speed v₁ on the nth orbit
with radius rn, (k being Coulomb/s constant)
mevn = ke²/rn
mevn² = ke²/rn
mevn²/rn = ke²/rn
2.2
Ome²v² = ke²/r²
Determine the distance between the electron and proton in an atom if the potential energy ?U of the electron is 12.6 eV (electronvolt, 1 eV =1.6×10−19=1.6×10−19 J). Give your answer in Angstrom (1 A = 10-10 m).
Using the Bohr model, calculate the speed of the electron when it is in the first excited state, n = 2. The Bohr radius ₁ 5.29 x 10-11 m.
Assume the electron is non-relativistic.
Chapter 28 Solutions
College Physics
Ch. 28.3 - Prob. 28.1QQCh. 28.4 - Prob. 28.2QQCh. 28.5 - Prob. 28.3QQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQ
Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46APCh. 28 - Prob. 47APCh. 28 - Prob. 48APCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Determine the distance between the electron and proton in an atom if the potential energy U of the electron is 13.8 ev (electronvolt, 1 eV = 1.6 × 10-19 J). Give your answer in Angstrom (1 A = 10-10 m). Answer: Choose... + Previous pagearrow_forwardAn electron revolves around the nucleus of an atom in a circular orbit of radius 4.0Å with a speed of 6.0 x 10^6 ms-1. Calculate the linear kinetic energy.arrow_forwardConsider the element Hydrogen. In this atom, assume the electron travels with a speed of 6.8 105 m/s. What is the radius between the nucleus and the orbiting electron in m?arrow_forward
- Determine the distance between the electron and proton in an atom if the potential energy U of the electron is 13.8 ev (electronvolt, 1 eV -19 1.6 x 10 J). Give your answer in Angstrom (1 A = 10"1º m). Answer: Choose... + Next pagearrow_forwardIf the speed of electron in the first Bohr orbit of radius 0.5 A is 2.24 × 106 m/s, then the period of revolution of the electron in this orbit is, (a) 1.403 × 10-16 S (b) 2.403 x 10-16 S (c) 1.403 × 10-¹1 S (d) 2.403 x 10-¹¹ Sarrow_forward2 D -e Physical constants (A) (in m) Bohr Model mv² - h = 6.626 x 10-34 Js; Ke² = 2.307 x 10-28 Jm; m = 9.11 x 10-31 kg. The old Bohr model of the hydrogen atom was based on... (1) the assumption that the electron travels on a circle (A) What is the radius of the orbit with n = 5? (B) What is the speed of the orbit with n = 5? Ke² ra and obeys Newton's second law, and (2) the hypothsis that angular momentum is quantized. For the Bohr model, (1) mvr = n (2) 27 OA: 2.774x10-10 OB: 3.468x10-10 OC: 4.334x10-10 OD: 5.418x10-10 DE: 6.773x10-10 OF: 8.466x10-10 OG: 1.058x109 OH: 1.323x10-9 Submit Answer Tries 0/20arrow_forward
- q; An electron and a proton are a distance r = 7.5×〖10〗^(-9) m apart. How much energy is required to increase their distance of separation by a factor of two?arrow_forwardChapter 39, Problem 043 In the ground state of the hydrogen atom, the electron has a total energy of -13.6 ev. What are (a) its kinetic energy and (b) its potential energy if the electron is a distance 4.0a from the central nucleus? Here a is the Bohr radius. (a) Number Units eV (b) Number Units eVarrow_forwardIf the speed of the electron in Example 19-4 were 7.3 * 105m>s,what would be the corresponding orbital radius?arrow_forward
- Find the velocity of the electron in a circular orbit with an average radius [ = 6,5.10-11 m around the nucleus of my hydrogen atom. a) v = 2,86. 10 m/s b) Ov= 1,21.10 m/s c)O v 1.97.10 m/s d) v 3,2. 10° m/sarrow_forwardConsider a two-electron atom in which the electrons, orbiting a nucleus of charge+Ze, follow Bohr-like orbits of the same radius r, with the electrons always on opposite sides of the nucleus. (a) Show that the net force on each electron is toward the nucleus and has magnitude. (b) Use the fact that this is the centripetal force to show that the square of each electron’s orbital speed v is given by as attached.arrow_forwardThe electron of a hydrogen atom is in an orbit with radius of 8.46 Å (1 Å = 10-10 m), according to the Bohr model. Which of the following statements is correct? a) The total energy of the orbit is –13.6 eV, and the kinetic energy is +13.6 eV. b) The total energy of the orbit is –0.85 eV, and the potential energy is –1.70 eV. c) The total energy of the orbit is –0.85 eV, and the potential energy is +1.70 eV. d) The total energy of the orbit is –0.85 eV, and the potential energy is –0.85 eV. e) The total energy of the orbit is –3.40 eV, and the potential energy is –6.80 eV.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning