College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 20P
To determine
The expression for the allowed radius for the particle.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle of charge q and mass m, moving with a constant
speed v, perpendicular to a constant magnetic field B, follows
a circular path. If in this case the angular momentum about
the center of this circle is quantized so that mur = 2nh, show
that the allowed radii for the particle are
2nh
V qB
where n = 1, 2, 3,....
Please answer within 30 minutes. I will upvote!
Using Wien formula, find the energy density uλ at wavelength λ=450 nm at temperature T=750K , where a=0.015 and b′=750.
Calculate the De-Broglie wavelength for,
An atomic electron size of d is 2.8 fm, mass m is 9.1 x 10^-31 kg, and in orbital speed in first Bohr orbit is v= 2.6 x 10^6 m/s...Discuss the relative size of and d and lamda in both cases and identify the bodies either as macroscop ic system or as microscopic system.
Chapter 28 Solutions
College Physics
Ch. 28.3 - Prob. 28.1QQCh. 28.4 - Prob. 28.2QQCh. 28.5 - Prob. 28.3QQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQ
Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46APCh. 28 - Prob. 47APCh. 28 - Prob. 48APCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Check Your Understanding A sodium atom nukes a transition from the first excited state the wound state, emitting a 589.0-nm photon with energy 2.105 eV. If the lifetime of this excited state is 16108s, what is the uncertainty in energy of this state? What is width of the corresponding line?arrow_forwardThe work function for potassium is 2.26 eV. What is the cutoff frequency when this metal is used as photoelectrode? What is the stopping potential when for the emitted electrons when this photo electrode is exposed to radiation of frequency 1200 THz?arrow_forwardCheck Your Understanding If the Stem-Gerlach experiment yielded four distinct bands instead of two, what might be concluded about the spin quantum number of the charged particle?arrow_forward
- Show that the following 4 lines in the Lyman series can be predicted: 91.127, 97.202, 102.52, and 121.57 nm.arrow_forwardI need the answer as soon as possiblearrow_forwardThe shortest wavelength of the Lyman series of hydrogen is 91.13 nm. Find the three longest wavelengths in this series! Please Answer my question Im needed Max 30 minutes please.... Thank uarrow_forward
- DETAILS PREVIOUS ANSWERS SERPSE10 39.8.OP.024.MI. MY NOTES PRACTICE ANOTHER (a) An electron and a 0.0320 kg bullet each have a velocity of magnitude 480 m/s, accurate to within 0.0100%. Within what lower limit could we determine the position of each object along the direction of the velocity? (Give the lower limit for the electron in mm and that for the bulet in m.) 1205 343e 12 for the eiectron V mm for the bullet (b) What I7 Within what lower limit could we determine the position of each tbject along the direction of the velocity it the electron and the bulet were both relativistic, traveling at 0.300e measured with the same accuracy? (Give the lower limit for the electron in nm and that for the bullet in m.) for the electron Again, you will need to use the uncertainty principle, but note now the velooty is high compared to the speed of fight. So, you will need to use the relativistic definition of momentum. To find the uncertainty in velocity, treat the momentum and velocity…arrow_forwardThe Li2+ ion is hydrogenic and has a Lyman series of lines at740 747 em·', 877 924 em·', 925 933 em·'. and beyond. (a) Showthat the energy levels are of the form -hcR,;!ri' and find thevalue of RLi for this ion. (b) Go on to predict the wavenumbers ofthe two longest wavelength transitions of the Balmer series ofthe ion and (c) find the ionization energy of the ion.arrow_forwardI need the answer as soon as possiblearrow_forward
- The light observed that is emitted by a hydrogen atom is explained by a simple model of its structure with one proton in its nucleus and an electron bound to it, but only with internal energies of the atom satisfying EH=−RH/n2EH=−RH/n2 where RHRH is the Rydberg constant and nn is an integer such as 1, 2, 3 ... and so on. When a hydrogen atom in an excited state emits light, the photon carries away energy and the atom goes into a lower energy state. Be careful about units. The Rydberg constant in eV is 13.605693009 eV That would be multiplied by the charge on the electron 1.602× 10-19 C to give 2.18× 10-18 J A photon with this energy would have a frequency f such that E=hf. Its wavelength would be λ = c/f = hc/E. Sometimes it is handy to measure the Rydberg constant in units of 1/length for this reason. You may see it given as 109737 cm-1 if you search the web, so be aware that's not joules. The following questions are intended to help you understand the connection between…arrow_forwardIt is said that no two snowfl akes look exactly alike, but we know that snowfl akes have a quite regular, although complex, crystal structure. Discuss how this could be due to quantized behavior.arrow_forwardElectrons in the lower of two spin states in a magnetic field can absorb a photon of the right frequency and move to the higher state. Calculate the value of B for a wavelength of 4.20 cm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning