Concept explainers
Interpretation: To contrast, the oxidation of glucose to
Concept introduction: Adenosine triphosphate (ATP) is a molecule that is defined as the energy currency of life and provides energy to carry out the
The net yield of ATP for the complete oxidation of one molecule of glucose is obtained from the assembled ATP production from the glycolysis process, aerobic oxidation of pyruvate to
Trending nowThis is a popular solution!
Chapter 24 Solutions
Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card
- Write a generalized chemical equation, containing acronyms, for the hydrolysis of ATP to ADP.arrow_forwardPut the following substances in the correct order in which they are first encountered in the common metabolic pathway: succinate, FeSP, CO2, FADH2.arrow_forwardList, by name, the four general stages of the process by which biochemical energy is obtained from food.arrow_forward
- Specify, by name and by number present, the structural subunits present in an ATP molecule.arrow_forwardNADH and FADH2 can "create" ATP only if the cell can do electron transport True Falsearrow_forwardOxidation of one molecule of glucose yields more molecules of ATP than the oxidation of one molecule of lauric acid. Is it true or falsearrow_forward
- Please answer themarrow_forwardDetermine the number of ATP molecules that can be formed from the complete oxidation of 10 molecules of acetyl CoA. The overall net equation for the complete oxidation of acetyl CoA is provided below. Acetyl CoA + 3NAD+ + FAD + GDP + Pi + 2H₂O → 2CO2 + HS-CoA + 3NADH + 3H+ + FADH2 + GTP (Given: The oxidation of one NADH yields 2.5 ATP; the oxidation of one FADH2 yields 1.5 ATP; and one GDP yields 1 ATP.) O 10 ATP O 7,5 ATP O 100 ATP O 75 ATParrow_forwardBelow is the overall net equation for the complete oxidation of pyruvate. Calculate the number of ATP molecules that can be produced from the complete oxidation of 6 molecules of pyruvate. Pyruvate + 4NAD+ + FAD + GDP + Pi + 2H₂O → 3CO2 + 4NADH + 4H+ + FADH2 + GTP (Given: The oxidation of one NADH yields 2.5 ATP; the oxidation of one FADH2 yields 1.5 ATP; and one GDP yields 1 ATP.) O 75 ATP O 60 ATP O 12.5 ATP O 32 ATParrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning